Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Exp Eye Res ; 236: 109666, 2023 11.
Article in English | MEDLINE | ID: mdl-37783334

ABSTRACT

Angiogenesis, although required during eye development, has a causative effect in many ocular diseases. Aberrant neovascularization contributes to the progression of neovascular age-related macular degeneration (nAMD), a vision-threaten disease in aging Americans. Since increased amounts of vascular endothelial growth factor (VEGF) drives neovascularization during the pathogenesis of nAMD the standard of care are anti-VEGF therapies attempt to disrupt this vicious cycle. These current anti-VEGF therapies try to maintain vascular homeostasis while abating aberrant neovascularization but regrettably don't prevent fibrosis or scar formation. In addition, some patients demonstrate an incomplete response to anti-VEGF therapy as demonstrated by progressive vision loss. Here, we show choroidal endothelial cells (ChEC) incubated with artesunate demonstrated decreased migration and inflammatory and fibrotic factor expression, which corresponded with decreased sprouting in a choroid/retinal pigment epithelium (RPE) explant sprouting angiogenesis assay. To assess the efficacy of artesunate to curtail neovascularization in vivo, we utilized laser photocoagulation-induced rupture of the Bruch's membrane to induce choroidal neovascularization (CNV). Artesunate significantly inhibited CNV and the accompanying fibrotic scar, perhaps due in part to its ability to inhibit mononuclear phagocyte (MP) recruitment. Thus, artesunate shows promise in inhibiting both CNV and fibrosis.


Subject(s)
Choroidal Neovascularization , Vascular Endothelial Growth Factor A , Humans , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Artesunate/therapeutic use , Cicatrix/prevention & control , Cicatrix/pathology , Endothelial Cells/metabolism , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/prevention & control , Choroidal Neovascularization/etiology , Vascular Endothelial Growth Factors , Disease Models, Animal , Mice, Inbred C57BL
2.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768740

ABSTRACT

Cytochrome P450 (CYP) 1B1 is a heme-containing monooxygenase found mainly in extrahepatic tissues, including the retina. CYP1B1 substrates include exogenous aromatic hydrocarbons, such as dioxins, and endogenous bioactive compounds, including 17ß-estradiol (E2) and arachidonic acid. The endogenous compounds and their metabolites are mediators of various cellular and physiological processes, suggesting that CYP1B1 activity is likely important in maintaining proper cellular and tissue functions. We previously demonstrated that lack of CYP1B1 expression and activity are associated with increased levels of reactive oxygen species and oxidative stress in the retinal vasculature and vascular cells, including retinal endothelial cells (ECs). However, the detailed mechanism(s) of how CYP1B1 activity modulates redox homeostasis remained unknown. We hypothesized that CYP1B1 metabolism of E2 affects bone morphogenic protein 6 (BMP6)-hepcidin-mediated iron homeostasis and lipid peroxidation impacting cellular redox state. Here, we demonstrate retinal EC prepared from Cyp1b1-deficient (Cyp1b1-/-) mice exhibits increased estrogen receptor-α (ERα) activity and expresses higher levels of BMP6. BMP6 is an inducer of the iron-regulatory hormone hepcidin in the endothelium. Increased hepcidin expression in Cyp1b1-/- retinal EC resulted in decreased levels of the iron exporter protein ferroportin and, as a result, increased intracellular iron accumulation. Removal of excess iron or antagonism of ERα in Cyp1b1-/- retinal EC was sufficient to mitigate increased lipid peroxidation and reduce oxidative stress. Suppression of lipid peroxidation and antagonism of ERα also restored ischemia-mediated retinal neovascularization in Cyp1b1-/- mice. Thus, CYP1B1 expression in retinal EC is important in the regulation of intracellular iron levels, with a significant impact on ocular redox homeostasis and oxidative stress through modulation of the ERα/BMP6/hepcidin axis.


Subject(s)
Estrogen Receptor alpha , Hepcidins , Animals , Mice , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Estrogen Receptor alpha/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Oxidative Stress/physiology , Retina/metabolism , Intracellular Space/metabolism
3.
Biomolecules ; 12(9)2022 09 14.
Article in English | MEDLINE | ID: mdl-36139134

ABSTRACT

Branching morphogenesis is a key developmental process during organogenesis, such that its disruption frequently leads to long-term consequences. The kidney and eye share many etiologies, perhaps, due to similar use of developmental branching morphogenesis and signaling pathways including cell death. Tipping the apoptotic balance towards apoptosis imparts a ureteric bud and retinal vascular branching phenotype similar to one that occurs in papillorenal syndrome. Here, to compare ureteric bud and retinal vascular branching in the context of decreased apoptosis, we investigated the impact of Bim, Bcl-2's rival force. In the metanephros, lack of Bim expression enhanced ureteric bud branching with increases in ureteric bud length, branch points, and branch end points. Unfortunately, enhanced ureteric bud branching also came with increased branching defects and other undesirable consequences. Although we did see increased nephron number and renal mass, we observed glomeruli collapse. Retinal vascular branching in the absence of Bim expression had similarities with the ureteric bud including increased vascular length, branching length, segment length, and branching interval. Thus, our studies emphasize the impact appropriate Bim expression has on the overall length and branching in both the ureteric bud and retinal vasculature.


Subject(s)
Ureter , Endothelium , Epithelium , Morphogenesis , Proto-Oncogene Proteins c-bcl-2/metabolism , Ureter/metabolism
4.
Cells ; 11(6)2022 03 11.
Article in English | MEDLINE | ID: mdl-35326420

ABSTRACT

Neovascular or wet age-related macular degeneration (nAMD) causes vision loss due to inflammatory and vascular endothelial growth factor (VEGF)-driven neovascularization processes in the choroid. Due to the excess in VEGF levels associated with nAMD, anti-VEGF therapies are utilized for treatment. Unfortunately, not all patients have a sufficient response to such therapies, leaving few if any other treatment options for these patients. Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator found in endothelial cells that participates in modulating barrier function, angiogenesis, and inflammation. S1P, through its receptor (S1PR1) in endothelial cells, prevents illegitimate sprouting angiogenesis during vascular development. In the present paper, we show that, in choroidal endothelial cells, S1PR1 is the most abundantly expressed S1P receptor and agonism of S1PR1-prevented choroidal endothelial cell capillary morphogenesis in culture. Given that nAMD pathogenesis draws from enhanced inflammation and angiogenesis as well as a loss of barrier function, we assessed the impact of S1PR agonism on choroidal neovascularization in vivo. Using laser photocoagulation rupture of Bruch's membrane to induce choroidal neovascularization, we show that S1PR non-selective (FTY720) and S1PR1 selective (CYM5442) agonists significantly inhibit choroidal neovascularization in this model. Thus, utilizing S1PR agonists to temper choroidal neovascularization presents an additional novel use for these agonists presently in clinical use for multiple sclerosis as well as other inflammatory diseases.


Subject(s)
Choroidal Neovascularization , Fingolimod Hydrochloride , Choroid/metabolism , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Endothelial Cells/metabolism , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Inflammation/pathology , Phosphates , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors
5.
Life (Basel) ; 12(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35207495

ABSTRACT

Inflammation is increasingly recognized as an important modulator in the pathogenesis of neovascular age-related macular degeneration (nAMD). Although significant progress has been made in delineating the pathways that contribute to the recruitment of inflammatory cells and their contribution to nAMD, we know little about what drives the resolution of these inflammatory responses. Gaining a better understanding of how immune cells are cleared in the choroid will give a novel insight into how sustained inflammation could influence the pathogenesis of nAMD. The pro-apoptotic Bcl-2 family member Bim is a master regulator of immune cell homeostasis. In its absence, immune cell lifespan and numbers increase. Most therapeutic regimes that squelch inflammation do so by enhancing immune cell apoptosis through enhanced Bim expression and activity. To test the hypothesis that Bim expression tempers inflammation during the pathogenesis of nAMD, we used the mouse laser-induced choroidal neovascularization (CNV) model in which inflammation acts as a facilitator of CNV. Here, we showed minimal to no change in the recruitment of F4/80-, CD80-, CD11b-, and Iba1-positive myeloid-derived mononuclear phagocytes to the site of laser photocoagulation in the absence of Bim expression. However, the resolution of these cells from the choroid of Bim-deficient (Bim -/-) mice was significantly diminished following laser photocoagulation. With time, we noted increased scar formation, demonstrated by collagen I staining, in Bim -/- mice with no change in the resolution of neovascularization compared to wild-type littermates. We also noted that mice lacking Bim expression in mononuclear phagocytes (BimFlox/Flox; Lyz2-Cre (BimMP) mice) had delayed resolution of F4/80-, CD80-, CD11b-, and Iba1-positive cells, while those lacking Bim expression in endothelial cells (BimFlox/Flox; Cad5-Cre (BimEC) mice) had delayed resolution of only CD11b- and Iba1-positive cells. Both BimMP and BimEC mice demonstrated increased scar formation, albeit to differing degrees. Thus, our studies show that resolving inflammation plays an important role in moderating scar formation in nAMD, and it is impacted by Bim expression in both the endothelium and mononuclear phagocyte lineages.

6.
Front Cell Dev Biol ; 9: 737426, 2021.
Article in English | MEDLINE | ID: mdl-34722519

ABSTRACT

Adenosine receptors (AR) are widely expressed in a variety of tissues including the retina and brain. They are involved in adenosine-mediated immune responses underlying the onset and progression of neurodegenerative diseases. The expression of AR has been previously demonstrated in some retinal cells including endothelial cells and retinal pigment epithelial cells, but their expression in the choroid and choroidal cells remains unknown. Caffeine is a widely consumed AR antagonist that can influence inflammation and vascular cell function. It has established roles in the treatment of neonatal sleep apnea, acute migraine, and post lumbar puncture headache as well as the neurodegenerative diseases such as Parkinson and Alzheimer. More recently, AR antagonism with caffeine has been shown to protect preterm infants from ischemic retinopathy and retinal neovascularization. However, whether caffeine impacts the development and progression of ocular age-related diseases including neovascular age-related macular degermation remains unknown. Here, we examined the expression of AR in retinal and choroidal tissues and cells. We showed that antagonism of AR with caffeine or istradefylline decreased sprouting of thoracic aorta and choroid/retinal pigment epithelium explants in ex vivo cultures, consistent with caffeine's ability to inhibit endothelial cell migration in culture. In vivo studies also demonstrated the efficacy of caffeine in inhibition of choroidal neovascularization and mononuclear phagocyte recruitment to the laser lesion sites. Istradefylline, a specific AR 2A antagonist, also decreased choroidal neovascularization. Collectively, our studies demonstrate an important role for expression of AR in the choroid whose antagonism mitigate choroidal inflammatory and angiogenesis activities.

7.
Front Cell Dev Biol ; 9: 671989, 2021.
Article in English | MEDLINE | ID: mdl-33968943

ABSTRACT

Tight regulation of positive and negative regulators of angiogenesis is essential, particularly in the eye where their dysregulation can lead to vision loss. Thrombospondin-1 (TSP1) is a matricellular protein that negatively regulates angiogenesis and inflammation in the eye. It aids ocular vascular homeostasis such that its loss contributes to increased retinal vascular density and pathologic ocular neovascularization. Our previous studies demonstrated that mice globally lacking TSP1 expression had increased retinal vascular density, decreased hyperoxia-induced retinal vessel loss, and increased choroidal neovascularization. Here we determined the impact to the ocular vasculature of endothelial cell, pericyte, or astrocyte loss of TSP1 expression. Only lack of TSP1 expression in endothelial cells was sufficient to increase choroidal neovascularization with mice lacking expression in pericytes or astrocytes not demonstrating a significant impact. Although the global TSP1 knockout mice demonstrated increased retinal vascular density, individual cell type loss of TSP1 resulted in decreased retinal endothelial cell numbers before and/or after vascular maturation in a cell type specific fashion. Retinas from mice lacking TSP1 expression in endothelial cells, pericytes or astrocytes were not protected from retinal vessel regression in response to hyperoxia as we previously observed in the global knockout. Thus, modulation of TSP1 expression in individual cell types demonstrates a response that is unique to the role TSP1 plays in that cell type of interest, and their coordinated activity is critical for vision.

8.
Exp Eye Res ; 195: 108030, 2020 06.
Article in English | MEDLINE | ID: mdl-32272114

ABSTRACT

Retinopathy of prematurity (ROP) is a growing cause of lifelong blindness and visual defects as improved neonatal care worldwide increases survival in very-low-birthweight preterm newborns. Advancing ROP is managed by laser surgery or a single intravitreal injection of anti-VEGF, typically at 33-36 weeks gestational age. While newer methods of scanning and telemedicine improve monitoring ROP, the above interventions are more difficult to deliver in developing countries. There is also concern as to laser-induced detachment and adverse developmental effects in newborns of anti-VEGF treatment, spurring a search for alternative means of mitigating ROP. Pigment epithelium-derived factor (PEDF), a potent angiogenesis inhibitor appears late in gestation, is undetected in 25-28 week vitreous, but present at full term. Its absence may contribute to ROP upon transition from high-to-ambient oxygen environment or with intermittent hypoxia. We recently described antiangiogenic PEDF-derived small peptides which inhibit choroidal neovascularization, and suggested that their target may be laminin receptor, 67LR. The latter has been implicated in oxygen-induced ischemic retinopathy (OIR). Here we examined the effect of a nonapeptide, PEDF 336, in a newborn mouse OIR model. Neovascularization was significantly decreased in a dose-responsive manner by single intravitreal (IVT) injections of 1.25-7.5 µg/eye (1.0-6.0 nmol/eye). By contrast, anti-mouse VEGFA164 was only effective at 25 ng/eye, with limited dose-response. Combination of anti-VEGFA164 with PEDF 336 gave only the poorer anti-VEGF response while abrogating the robust inhibition seen with peptide-alone, suggesting a need for VEGF in sensitizing the endothelium to the peptide. VEGF stimulated 67LR presentation on endothelial cells, which was decreased in the presence of PEDF 336. Mouse and rabbit eyes showed no histopathology or inflammation after IVT peptide injection. Thus, PEDF 336 is a potential ROP therapeutic, but is not expected to be beneficial in combination with anti-VEGF.


Subject(s)
Animals, Newborn , Bevacizumab/administration & dosage , Eye Proteins/metabolism , Ischemia/drug therapy , Nerve Growth Factors/metabolism , Retinal Neovascularization/drug therapy , Serpins/metabolism , Animals , Disease Models, Animal , Female , Intravitreal Injections , Ischemia/metabolism , Ischemia/pathology , Male , Mice , Mice, Inbred C57BL , Oxygen/toxicity , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors
9.
Exp Eye Res ; 188: 107798, 2019 11.
Article in English | MEDLINE | ID: mdl-31520600

ABSTRACT

Abnormal migration and proliferation of endothelial cells (EC) drive neovascular retinopathies. While anti-VEGF treatment slows progression, pathology is often supported by decrease in intraocular pigment epithelium-derived factor (PEDF), an endogenous inhibitor of angiogenesis. A surface helical 34-mer peptide of PEDF, comprising this activity, is efficacious in animal models of neovascular retina disease but remains impractically large for therapeutic use. We sought smaller fragments within this sequence that mitigate choroidal neovascularization (CNV). Expecting rapid intravitreal (IVT) clearance, we also developed a method to reversibly attach peptides to nano-carriers for extended delivery. Synthetic fragments of 34-mer yielded smaller anti-angiogenic peptides, and N-terminal capping with dicarboxylic acids did not diminish activity. Charge restoration via substitution of an internal aspartate by asparagine improved potency, achieving low nM apoptotic response in VEGF-activated EC. Two optimized peptides (PEDF 335, 8-mer and PEDF 336, 9-mer) were tested in a mouse model of laser-induced CNV. IVT injection of either peptide, 2-5 days before laser treatment, gave significant CNV decrease at day +14 post laser treatment. The 8-mer also decreased CNV, when administered as eye drops. Also examined was a nanoparticle-conjugate (NPC) prodrug of the 9-mer, having positive zeta potential, expected to display longer intraocular residence. This NPC showed extended efficacy, even when injected 14 days before laser treatment. Neither inflammatory cells nor other histopathologic abnormalities were seen in rabbit eyes harvested 14 days following IVT injection of PEDF 336 (>200 µg). No rabbit or mouse eye irritation was observed over 12-17 days of PEDF 335 eye drops (10 mM). Viability was unaffected in 3 retinal and 2 choroidal cell types by PEDF 335 up to 100 µM, PEDF 336 (100 µM) gave slight growth inhibition only in choroidal EC. A small anti-angiogenic PEDF epitope (G-Y-D-L-Y-R-V) was identified, variants (adipic-Sar-Y-N-L-Y-R-V) mitigate CNV, with clinical potential in treating neovascular retinopathy. Their shared active motif, Y - - - R, is found in laminin (Ln) peptide YIGSR, which binds Ln receptor 67LR, a known high-affinity ligand of PEDF 34-mer.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/prevention & control , Eye Proteins/therapeutic use , Nerve Growth Factors/therapeutic use , Oligopeptides/therapeutic use , Serpins/therapeutic use , Administration, Ophthalmic , Angiogenesis Inhibitors/chemistry , Animals , Apoptosis , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Drug Carriers , Electroretinography , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Eye Proteins/chemistry , Mice , Mice, Inbred C57BL , Nerve Growth Factors/chemistry , Oligopeptides/chemistry , Ophthalmic Solutions , Prodrugs , Rabbits , Rats , Serpins/chemistry
10.
Sci Rep ; 9(1): 9700, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31273232

ABSTRACT

B-cell lymphoma 2 (Bcl-2) protein is the founding member of a group of proteins known to modulate apoptosis. Its discovery set the stage for identification of family members with either pro- or anti-apoptotic properties. Expression of Bcl-2 plays an important role during angiogenesis by influencing not only vascular cell survival, but also migration and adhesion. Although apoptosis and migration are postulated to have roles during vascular remodeling and regression, the contribution of Bcl-2 continues to emerge. We previously noted that the impaired retinal vascularization and an inability to undergo pathologic neovascularization observed in mice globally lacking Bcl-2 did not occur when mice lacked the expression of Bcl-2 only in endothelial cells. To further examine the effect of Bcl-2 expression during vascularization of the retina, we assessed its contribution in pericytes or astrocytes by generating mice with a conditional Bcl-2 allele (Bcl-2Flox/Flox) and Pdgfrb-cre (Bcl-2PC mice) or Gfap-cre (Bcl-2AC mice). Bcl-2PC and Bcl-2AC mice demonstrated increased retinal vascular cell apoptosis, reduced numbers of pericytes and endothelial cells and fewer arteries and veins in the retina. Bcl-2PC mice also demonstrated delayed advancement of the superficial retinal vascular layer and aberrant vascularization of the deep vascular plexus and central retina. Although pathologic neovascularization in oxygen-induced ischemic retinopathy (OIR) was not affected by lack of expression of Bcl-2 in either pericytes or astrocytes, laser-induced choroidal neovascularization (CNV) was significantly reduced in Bcl-2PC mice compared to littermate controls. Together these studies begin to reveal how cell autonomous modulation of apoptosis in vascular cells impacts development and homeostasis.


Subject(s)
Astrocytes/pathology , Choroidal Neovascularization/pathology , Endothelium, Vascular/pathology , Neovascularization, Pathologic/pathology , Pericytes/pathology , Proto-Oncogene Proteins c-bcl-2/physiology , Retinal Diseases/pathology , Animals , Apoptosis , Cell Proliferation , Choroidal Neovascularization/etiology , Choroidal Neovascularization/metabolism , Female , Ischemia/etiology , Ischemia/metabolism , Ischemia/pathology , Male , Mice , Mice, Knockout , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/metabolism , Oxygen/toxicity , Retinal Diseases/etiology , Retinal Diseases/metabolism , Retinal Vessels/pathology
11.
Invest Ophthalmol Vis Sci ; 59(10): 4071-4081, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30098194

ABSTRACT

Purpose: Drug delivery by intravitreal injection remains problematic, small agents and macromolecules both clearing rapidly. Typical carriers use microparticles (>2 µm), with size-related liabilities, to slow diffusion. We recently described cationic nanoparticles (NP) where conjugated Arg peptides prolonged residence in rat eyes, through ionic interaction with vitreal poly-anions. Here we extended this strategy to in vivo tracking of NP-conjugate (NPC) clearance from rabbit eyes. Relating t1/2 to zeta potential, and varied dose, we estimated the limits of this charge-based delivery system. Methods: NPC carried covalently attached PEG8-2Arg or PEG8-3Arg pentapeptides, having known sequences from human eye proteins. Peptides were conjugated (61-64 per NPC); each NP/NPC also carried a cyanine7 tag (<0.5 dye/particle). In vivo imaging system (IVIS), after intravitreal injection, estimated NPC loss by 800-nm photon emission (745-nm excitation) at 1 to 3-week intervals following initial scan at day 10. Results: NPC of 2Arg-peptides or 3Arg-peptides showed clearance t1/2 of 7 days and 17 days respectively, unconjugated NP t1/2 was <<5 days. Doses of 90, 180, and 360 µg of PEG8-2Arg NPC were compared. The lower doses showed dose-proportional day-10 concentration, and similar clearance. Higher early loss was seen with a 360-µg dose, exceeding rabbit vitreal binding capacity. No inflammation was observed. Conclusions: This type of cationic NPC can safely increase residence t1/2 in a 1 to 3-week range, with dose <100 µg per mL vitreous. Human drug load may then range from 10 to 100 µg/eye, usefulness depending on individual drug potency and release rate, superimposed on extended intravitreal residence.


Subject(s)
Arginine/pharmacokinetics , Drug Carriers/pharmacokinetics , Drug Delivery Systems/methods , Intravitreal Injections , Nanoparticles , Peptides , Vitreous Body/metabolism , Animals , Arginine/administration & dosage , Drug Carriers/chemistry , Models, Animal , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Peptides/administration & dosage , Peptides/pharmacokinetics , Rabbits , Rats
12.
PLoS One ; 12(12): e0190131, 2017.
Article in English | MEDLINE | ID: mdl-29272316

ABSTRACT

Vitamin D provides a significant benefit to human health, and its deficiency has been linked to a variety of diseases including cancer. Vitamin D exhibits anticancer effects perhaps through inhibition of angiogenesis. We previously showed that the active form of vitamin D (1, 25(OH)2D3; calcitriol) is a potent inhibitor of angiogenesis in mouse model of oxygen-induced ischemic retinopathy (OIR). Many of vitamin D's actions are mediated through vitamin D receptor (VDR). However, the role VDR expression plays in vascular development and inhibition of neovascularization by 1, 25(OH)2D3 remains unknown. Here using wild type (Vdr +/+) and Vdr-deficient (Vdr -/-) mice, we determined the impact of Vdr expression on postnatal development of retinal vasculature and retinal neovascularization during OIR. We observed no significant effect on postnatal retinal vascular development in Vdr -/- mice up to postnatal day 21 (P21) compared with Vdr +/+ mice. However, we observed an increase in density of pericytes (PC) and a decrease in density of endothelial cells (EC) in P42 Vdr -/- mice compared with Vdr +/+ mice, resulting in a significant decrease in the EC/PC ratio. Although we observed no significant impact on vessel obliteration and retinal neovascularization in Vdr -/- mice compared with Vdr +/+ mice during OIR, the VDR expression was essential for inhibition of retinal neovascularization by 1, 25(OH)2D3. In addition, the adverse impact of 1, 25(OH)2D3 treatment on the mouse bodyweight was also dependent on VDR expression. Thus, VDR expression plays a significant role during retinal vascular development, especially during maturation of retinal vasculature by promoting PC quiescence and EC survival, and inhibition of ischemia-mediated retinal neovascularization by 1, 25(OH)2D3.


Subject(s)
Calcitriol/pharmacology , Receptors, Calcitriol/metabolism , Retinal Neovascularization/prevention & control , Retinal Vessels/growth & development , Animals , Mice , Mice, Knockout
13.
Invest Ophthalmol Vis Sci ; 58(1): 299-308, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28114591

ABSTRACT

Purpose: The role of ß-adrenergic receptor (AR) signaling in neovascular ocular diseases has recently emerged. We have previously reported that intraperitoneal propranolol inhibits choroidal neovascularization (CNV) in vivo and ß2-AR blockade reduces vascular endothelial growth factor (VEGF) expression in mouse retinal pigment epithelium and choroidal endothelial cells in culture. Here we tested the hypothesis that the ß2-AR regulates CNV through modulation of VEGF and inflammatory cytokine expression. Methods: Mice were subjected to laser burns, inducing CNV, and were treated with an intravitreal ß2-AR antagonist. After 3 and 5 days, total eye interleukin-6 (IL-6) and VEGF protein levels were measured, respectively. After 14 days, CNV was measured on choroidal-scleral flatmounts. The effects of ß-AR signaling on VEGF and IL-6 expression were investigated in various mouse retinal and human RPE cells by using specific ß-AR agonists and antagonists. Results: ß2-Adrenergic receptor signaling increased Vegf mRNA expression by approximately 3- to 4-fold in mouse retinal microglia and pericytes in culture. ß2-Adrenergic receptor signaling upregulated IL-6 mRNA expression between 10- and 60-fold in mouse retinal microglia, pericytes, RPE, and choroidal endothelial cells in culture. Intravitreal injection of ß2-AR antagonist ICI 118,551 reduced CNV by 35% and decreased IL-6 protein levels by approximately 50%. In primary human RPE cells, ß2-AR activation also stimulated VEGF and IL-6 mRNA expression by 2- and 10-fold, respectively. Conclusions: Anti-VEGF therapy for CNV is highly effective; however, some patients are resistant to therapy while others undergo repeated, frequent treatments. ß2-Adrenergic receptor signaling is a potential therapeutic target because of its angiogenic and inflammatory properties.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Choroidal Neovascularization/drug therapy , Gene Expression Regulation/drug effects , Interleukin-6/genetics , RNA, Messenger/genetics , Retinal Pigment Epithelium/metabolism , Vascular Endothelial Growth Factor A/genetics , Animals , Cells, Cultured , Choroid/drug effects , Choroid/metabolism , Choroid/pathology , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Mice , Mice, Inbred C57BL , Receptors, Adrenergic, beta/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/biosynthesis
14.
Ocul Oncol Pathol ; 4(1): 52-56, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29344500

ABSTRACT

BACKGROUND/AIMS: Establish a reliable rabbit dry eye (DE) model. METHODS: An interventional cohort study surgically removing glands contributing to the tear film. Eight rabbits were studied after removal of left lacrimal, Harderian, or both glands. Additional rabbits had Meibomian glands in the left eye thermally obstructed. All were followed for 10 weeks with phenol red thread (PRT) and slit-lamp examination with 2% fluorescein. We assessed corneal sensitivity using a Cochet-Bonnet esthesiometer. Outcome measures were severity/duration of reduced PRT, punctate epithelial erosions (PEE), and histologic evidence of corneal pannus. RESULTS: Fluorescein staining demonstrated signs of dryness including PEE in all of the interventional eyes. The subjective measurement of epithelial erosions correlated with decreased tear production. PRT measurements in the control eyes averaged 31.54 mm (±1.83) and 22.71 mm (±1.60) in the eight left eyes, without loss of corneal sensitivity. CONCLUSIONS: Surgical removal of either the Harderian or lacrimal gland results in statistically significant decreases in tear volume and the development of severe DE. Removal of both glands results in the occurrence of a DE of comparable severity/duration to removal of either the lacrimal or Harderian gland alone. Meibomian gland obstruction contributes less to the DE model.

15.
J Neurosurg ; 126(5): 1448-1460, 2017 May.
Article in English | MEDLINE | ID: mdl-27419830

ABSTRACT

OBJECTIVE Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than 2 years with current treatment. Glioblastomas exhibit extensive intratumoral and interpatient heterogeneity, suggesting that successful therapies should produce broad anticancer activities. Therefore, the natural nontoxic pleiotropic agent, resveratrol, was studied for antitumorigenic effects against GBM. METHODS Resveratrol's effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts in mice by using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. RESULTS Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability suggesting anti-stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel Transwell assay at doses similar to those mediating antiproliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intratumoral or peritumoral resveratrol injection further suppressed growth and approximated tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared with intravenous delivery, and with no apparent toxicity. CONCLUSIONS Resveratrol potently inhibited GBM and GSC growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other antitumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e., convection-enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in the brain. Resveratrol's nontoxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Glioblastoma/drug therapy , Glioblastoma/pathology , Resveratrol/therapeutic use , Animals , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation , Female , Humans , Male , Mice , Mice, Inbred BALB C , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
16.
Biomaterials ; 93: 27-37, 2016 07.
Article in English | MEDLINE | ID: mdl-27061268

ABSTRACT

Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of VBP microspheres conferred a differential ability to up- or down-regulate VEGF activity in culture with primary human endothelial cells. VBP microspheres with fast-degrading crosslinks reduced VEGF activity and signaling, while VBP microspheres with no inherent degradability sequestered and promoted VEGF activity in culture with endothelial cells. VBP microspheres with degradable crosslinks significantly reduced neovascularization in vivo, but neither non-degradable VBP microspheres nor bolus delivery of soluble VBP reduced neovascularization. The covalent incorporation of VBP to degradable microspheres was required to reduce neovascularization in a mouse model of choroidal neovascularization in vivo, which demonstrates a potential clinical application of degradable VBP microspheres to reduce pathological angiogenesis. The results herein highlight the ability to modulate the activity of a sequestered growth factor by changing the crosslinker identity within PEG hydrogel microspheres. The insights gained here may instruct the design and translation of affinity-based growth factor sequestering biomaterials for regenerative medicine applications.


Subject(s)
Microspheres , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Animals , Choroidal Neovascularization/pathology , Cross-Linking Reagents/chemistry , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Induced Pluripotent Stem Cells/cytology , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Peptides/metabolism , Polyethylene Glycols/chemistry , Signal Transduction
17.
Invest Ophthalmol Vis Sci ; 56(13): 8228-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720475

ABSTRACT

PURPOSE: Determine the safe dose of intravitreal propranolol (IVP), and evaluate its inhibitory effect on laser-induced choroidal neovascularization (CNV). METHODS: To determine the IVP safe dose, 32 rabbits were divided into 4 groups. Three of these groups received IVP (15 µL) corresponding to 15 µg (group B), 30 µg (group C), and 60 µg (group D). The control group (A) received 15 µL saline. Safety was assessed by ocular examination, electroretinography (ERG), routine histopathologic evaluation, immunohistochemistry for glial fibrillary acidic protein (GFAP), and real-time qPCR for GFAP, VEGF, thrombospondin 1 (TSP1), and pigment epithelium-derived factor (PEDF). A similar experiment was performed in 24 mice by using a 100-fold lower amount of propranolol (0.15, 0.3, and 0.6 µg in 2 µL) based on vitreous volume. For assessment of the angioinhibitory effects of IVP, CNV was induced in 42 mice via laser burns. Mice were divided into two groups: group 1 received the safe dose of IVP (0.3 µg in 2 µL) and group 2 received saline. Neovascularization area was quantified by intercellular adhesion molecule (ICAM)-2 immunostaining of choroidal-scleral flat mounts by using ImageJ software. RESULTS: According to clinical, ERG, and histopathologic findings, 30 µg IVP was chosen as the safe dose in rabbit eyes, comparable to 0.3 µg IVP in mouse eyes. As compared to the control eyes, the development of CNV was attenuated (4.8-fold) in mice receiving 0.3 µg IVP. CONCLUSIONS: Intravitreal propranolol injection up to the final dose of 30 µg in rabbits and 0.3 µg in mice was safe, and was effective in attenuation of CNV in mice.


Subject(s)
Choroid/pathology , Choroidal Neovascularization/drug therapy , Propranolol/administration & dosage , Adrenergic beta-Antagonists/administration & dosage , Animals , Choroid/drug effects , Choroid/physiopathology , Choroidal Neovascularization/pathology , Choroidal Neovascularization/physiopathology , Disease Models, Animal , Electroretinography , Female , Fluorescein Angiography , Fundus Oculi , Intravitreal Injections , Mice , Rabbits , Treatment Outcome
18.
J Environ Pathol Toxicol Oncol ; 32(3): 241-4, 2013.
Article in English | MEDLINE | ID: mdl-24266410

ABSTRACT

The effectiveness of saline injection in reducing the toxicity profile of calcitriol when coadministered in mice was evaluated. Mortality was used as an end point to study the toxic effects of calcitriol; the relative risk of mortality in mice injected with saline was evaluated from our previously published animal experiments. We discovered that coadministration with 0.25 mL normal saline solution injected intraperitoneally is associated with a lower mortality rate than calcitriol given alone. The estimated relative risk of mortality was 0.0789 (95% confidence interval, 0.0051-1.22; z = 1.82; P = 0.070) when saline is administered with calcitriol compared to calcitriol alone. There was a reduction in serum calcium levels in mice that received saline (11.4 ± 0.15 mg/dL) compared to mice that did not receive saline (12.42 ± 1.61 mg/dL). Hydration with saline seems to reduce mortality and toxicity in mice receiving calcitriol. Given the decrease in mortality rates, intraperitoneal injections of saline should be considered in studies involving mice receiving injections of calcitriol.


Subject(s)
Calcitriol/adverse effects , Retinal Neoplasms/mortality , Retinoblastoma/mortality , Sodium Chloride/therapeutic use , Vitamin D/adverse effects , Animals , Calcitriol/administration & dosage , Calcitriol/therapeutic use , Calcium/blood , Calcium Channel Agonists/administration & dosage , Calcium Channel Agonists/adverse effects , Calcium Channel Agonists/therapeutic use , Disease Models, Animal , Drug Combinations , Injections, Intraperitoneal , Mice , Mice, Nude , Mice, Transgenic , Retinal Neoplasms/drug therapy , Retinal Neoplasms/metabolism , Retinoblastoma/drug therapy , Retinoblastoma/metabolism , Sodium Chloride/administration & dosage , Survival Rate , Vitamin D/administration & dosage , Vitamin D/therapeutic use
19.
Int Immunopharmacol ; 11(11): 1877-86, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21854876

ABSTRACT

We evaluated the anti-tumor effect of Resveratrol (RV) on M21 and NXS2 tumor cell lines and its immunosuppressive activity on human and murine immune cells to determine the potential for combining RV and immunotherapy. In vitro, concentrations of RV≥25 mcM, inhibited cell proliferation, blocked DNA synthesis and induced G1 phase arrest in tumor and immune cells. RV at 12-50 mcM inhibited antibody dependent cell mediated cytotoxicity (ADCC) of tumor cells facilitated by the hu14.18-IL2 immunocytokine (IC). The in vivo anti-tumor and immunomodulating activity of RV given systemically were assessed in mice. Results showed that this RV regimen inhibited the growth of NXS2 tumors in vivo but did not appear to interfere with blood cell count, splenocyte or macrophage function. Thus, RV may be a candidate for combining with immunotherapy.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Immunotherapy , Neoplasms/drug therapy , Stilbenes/pharmacology , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Flow Cytometry , Humans , Immunotherapy/methods , Leukocytes, Mononuclear/drug effects , Mice , Mice, Nude , Neoplasms/immunology , Neoplasms/pathology , Resveratrol , Spleen/cytology , Spleen/drug effects
20.
Melanoma Res ; 21(3): 180-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21407133

ABSTRACT

Resveratrol, a nontoxic natural product, exhibits multifaceted biological effects including antimutagenic and anticancer properties. We examined the effect of resveratrol on the expression and activation of Akt/protein kinase B and its impact on melanoma cell migration and invasiveness. We also explored the use of resveratrol as an antimalignant treatment option against skin melanoma in mouse models of the disease. Akt expression and activity were determined by a combination of real-time PCR and western blot analysis. Cell lines stably expressing Akt or a dominant negative variant were used to further establish the role of Akt during the response to resveratrol. Wound healing and transwell assays were used as in-vitro correlates of melanoma cell migration and invasiveness. The efficacy of resveratrol in the treatment of melanoma was assessed in two syngeneic mouse models. Resveratrol downregulated and inactivated Akt in B16F10 and B16BL6 melanoma cells. Resveratrol also inhibited the migratory and invasive properties of these highly malignant cells. The reduction of cell migration and invasion, however, was reversed in cell lines overexpressing Akt or after cotreatment with pharmacological inhibitors that blocked Akt degradation. Dominant-negative Akt cells were more sensitive to resveratrol and had diminished migratory properties. Oral treatment with resveratrol reduced primary tumor volume, Akt expression, and the propensity for metastasis in syngeneic mouse models of melanoma. These results suggest that resveratrol can reduce the malignant properties of highly invasive melanoma cells by inactivating Akt. The nontoxic targeting of Akt by resveratrol makes it an attractive treatment option for melanoma.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Melanoma, Experimental/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Skin Neoplasms/drug therapy , Stilbenes/pharmacology , Animals , Cell Growth Processes/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Enzyme Activation/drug effects , Female , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Resveratrol , Skin Neoplasms/enzymology , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...