Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Article in English | MEDLINE | ID: mdl-38693345

ABSTRACT

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Subject(s)
Embryophyta , Evolution, Molecular , Phylogeny , Signal Transduction , Signal Transduction/genetics , Embryophyta/genetics , Gene Regulatory Networks , Genome/genetics , Genome, Plant
2.
Microbiol Resour Announc ; 13(6): e0032224, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38771040

ABSTRACT

When very dry soil is rewet, rapid stimulation of microbial activity has important implications for ecosystem biogeochemistry, yet associated changes in microbial transcription are poorly known. Here, we present metatranscriptomes of California annual grassland soil microbial communities, collected over 1 week from soils rewet after a summer drought-providing a time series of short-term transcriptional response during rewetting.

3.
J Genomics ; 12: 44-46, 2024.
Article in English | MEDLINE | ID: mdl-38434106

ABSTRACT

Favolaschia claudopus, a wood-inhabiting basidiomycete of the Mycenaceae family, is considered an invasive species that has recently spread from Oceania to Europe. The CIRM-BRFM 2984 strain of this fungus was originally isolated from a basidiome collected from the fallen limb of a decayed oak tree in Southwest France. The genome sequence of this strain shared characteristics with other Mycenaceae species, including a large genome size and enriched content of protein-coding genes. The genome sequence provided here will facilitate further investigation on the factors that contribute to the successful global dissemination of F. claudopus.

4.
Genome Res ; 34(2): 286-299, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38479835

ABSTRACT

Genetic diversity is critical to crop breeding and improvement, and dissection of the genomic variation underlying agronomic traits can both assist breeding and give insight into basic biological mechanisms. Although recent genome analyses in plants reveal many structural variants (SVs), most current studies of crop genetic variation are dominated by single-nucleotide polymorphisms (SNPs). The extent of the impact of SVs on global trait variation, as well as their utility in genome-wide selection, is not yet understood. In this study, we built an SV data set based on whole-genome resequencing of diverse sorghum lines (n = 363), validated the correlation of photoperiod sensitivity and variety type, and identified SV hotspots underlying the divergent evolution of cellulosic and sweet sorghum. In addition, we showed the complementary contribution of SVs for heritability of traits related to sorghum adaptation. Importantly, inclusion of SV polymorphisms in association studies revealed genotype-phenotype associations not observed with SNPs alone. Three-way genome-wide association studies (GWAS) based on whole-genome SNP, SV, and integrated SNP + SV data sets showed substantial associations between SVs and sorghum traits. The addition of SVs to GWAS substantially increased heritability estimates for some traits, indicating their important contribution to functional allelic variation at the genome level. Our discovery of the widespread impacts of SVs on heritable gene expression variation could render a plausible mechanism for their disproportionate impact on phenotypic variation. This study expands our knowledge of SVs and emphasizes the extensive impacts of SVs on sorghum.


Subject(s)
Genetic Variation , Sorghum , Sorghum/genetics , Genome-Wide Association Study , Plant Breeding , Phenotype , Edible Grain/genetics , Polymorphism, Single Nucleotide
5.
Microbiol Resour Announc ; 13(3): e0098023, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38329355

ABSTRACT

We present six whole community shotgun metagenomic sequencing data sets of two types of biological soil crusts sampled at the ecotone of the Mojave Desert and Colorado Desert in California. These data will help us understand the diversity and function of biocrust microbial communities, which are essential for desert ecosystems.

6.
Mol Phylogenet Evol ; 193: 108010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38195011

ABSTRACT

Nidulariaceae, also known as bird's nest fungi, is an understudied group of mushroom-forming fungi. The common name is derived from their nest-like morphology. Bird's nest fungi are ubiquitous wood decomposers or saprobes on dung. Recent studies showed that species in the Nidulariaceae form a monophyletic group with five sub-clades. However, phylogenetic relationships among genera and placement of Nidulariaceae are still unclear. We present phylogenomic analyses of bird's nest fungi and related Agaricales fungi to gain insight into the evolution of Nidulariaceae. A species tree with 17 newly generated genomes of bird's nest fungi and representatives from all major clades of Agaricales was constructed using 1044 single-copy genes to explore the intergeneric relationships and pinpoint the placement of Nidulariaceae within Agaricales. We corroborated the hypothesis that bird's nest fungi are sister to Squamanitaceae, which includes mushroom-shaped fungi with a stipe and pileus that are saprobes and mycoparasites. Lastly, stochastic character mapping of discrete traits on phylogenies (SIMMAP) suggests that the ancestor of bird's nest fungi likely possessed an evanescent, globose peridium without strings attaching to the spore packets (funiculi). This analysis suggests that the funiculus was gained twice and that the persistent, cupulate peridium form was gained at least four times and lost once. However, alternative coding schemes and datasets with a wider array of Agaricales produced conflicting results during ancestral state reconstruction, indicating that there is some uncertainty in the number of peridium transitions and that taxon sampling may significantly alter ancestral state reconstructions. Overall, our results suggest that several key morphological characters of Nidulariaceae have been subject to homoplasy.


Subject(s)
Cyathus , Animals , Phylogeny , Birds
7.
Microbiol Resour Announc ; 13(2): e0108023, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38189307

ABSTRACT

We present eight metatranscriptomic datasets of light algal and cyanolichen biological soil crusts from the Mojave Desert in response to wetting. These data will help us understand gene expression patterns in desert biocrust microbial communities after they have been reactivated by the addition of water.

8.
New Phytol ; 242(4): 1676-1690, 2024 May.
Article in English | MEDLINE | ID: mdl-38148573

ABSTRACT

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.


Subject(s)
Forests , Fungi , Soil Microbiology , Transcriptome , Fungi/genetics , Fungi/physiology , Transcriptome/genetics , Mycorrhizae/physiology , Mycorrhizae/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Nitrogen/metabolism , Soil/chemistry , Ecosystem , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Plant J ; 117(5): 1543-1557, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100514

ABSTRACT

Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.


Subject(s)
Sorghum , Sorghum/genetics , Reverse Genetics , Plant Breeding , Mutation , Phenotype , Edible Grain/genetics , Ethyl Methanesulfonate/pharmacology , Genome, Plant/genetics
10.
Curr Biol ; 33(23): 5199-5207.e4, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37913769

ABSTRACT

Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.


Subject(s)
Viruses , DNA, Ribosomal , Genome , Heterochromatin , Eukaryota , Telomere , Phylogeny
11.
Microbiol Resour Announc ; 12(12): e0043523, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37982613

ABSTRACT

Yarrowia lipolytica is an oleaginous yeast that produces high titers of fatty acid-derived biofuels and biochemicals. It can grow on hydrophobic carbon sources and lignocellulosic hydrolysates. The genome sequence of Y. lipolytica NRRL Y-64008 is reported to aid in its development as a biotechnological chassis for producing biofuels and bioproducts.

12.
Microbiol Resour Announc ; 12(11): e0042623, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37906027

ABSTRACT

Lipomyces tetrasporous is an oleaginous yeast that can utilize a variety of plant-based sugars. It accumulates lipids during growth on lignocellulosic biomass hydrolysates. We present the annotated genome sequence of L. tetrasporous NRRL Y-64009 to aid in its development as a platform organism for producing lipids and lipid-based bioproducts.

13.
Mol Phylogenet Evol ; 189: 107938, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820761

ABSTRACT

The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking. In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chaetomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi.


Subject(s)
Genomics , Sordariales , Humans , Phylogeny , Genomics/methods , Genome , Sordariales/genetics , Base Sequence , Evolution, Molecular
14.
Commun Biol ; 6(1): 948, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723238

ABSTRACT

Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera: Linnemannia (MRE-L) and Benniella (MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicate Linnemannia and Benniella MRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.


Subject(s)
Mycorrhizae , Tenericutes , Phylogeny , Genomics , Mycorrhizae/genetics , Genome Size
15.
Plant Physiol ; 194(1): 243-257, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37399189

ABSTRACT

Plant lignocellulosic biomass, i.e. secondary cell walls of plants, is a vital alternative source for bioenergy. However, the acetylation of xylan in secondary cell walls impedes the conversion of biomass to biofuels. Previous studies have shown that REDUCED WALL ACETYLATION (RWA) proteins are directly involved in the acetylation of xylan but the regulatory mechanism of RWAs is not fully understood. In this study, we demonstrate that overexpression of a Populus trichocarpa PtRWA-C gene increases the level of xylan acetylation and increases the lignin content and S/G ratio, ultimately yielding poplar woody biomass with reduced saccharification efficiency. Furthermore, through gene coexpression network and expression quantitative trait loci (eQTL) analysis, we found that PtRWA-C was regulated not only by the secondary cell wall hierarchical regulatory network but also by an AP2 family transcription factor HARDY (HRD). Specifically, HRD activates PtRWA-C expression by directly binding to the PtRWA-C promoter, which is also the cis-eQTL for PtRWA-C. Taken together, our findings provide insights into the functional roles of PtRWA-C in xylan acetylation and consequently saccharification and shed light on synthetic biology approaches to manipulate this gene and alter cell wall properties. These findings have substantial implications for genetic engineering of woody species, which could be used as a sustainable source of biofuels, valuable biochemicals, and biomaterials.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Xylans/metabolism , Acetylation , Biomass , Biofuels/analysis , Plants/metabolism , Cell Wall/metabolism , Lignin/metabolism
16.
Curr Biol ; 33(10): 1926-1938.e6, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37080198

ABSTRACT

A fundamental goal in plant microbiome research is to determine the relative impacts of host and environmental effects on root microbiota composition, particularly how host genotype impacts bacterial community composition. Most studies characterizing the effect of plant genotype on root microbiota undersample host genetic diversity and grow plants outside of their native ranges, making the associations between host and microbes difficult to interpret. Here, we characterized the root microbiota of a large diversity panel of switchgrass, a North American native C4 bioenergy crop, in three field locations spanning its native range. Our data, composed of 1,961 samples, suggest that field location is the primary determinant of microbiome composition; however, substantial heritable variation is widespread across bacterial taxa, especially those in the Sphingomonadaceae family. Despite diverse compositions, relatively few highly prevalent taxa make up the majority of the switchgrass root microbiota, a large fraction of which is shared across sites. Local genotypes preferentially recruit/filter for local microbes, supporting the idea of affinity between local plants and their microbiota. Using genome-wide association, we identified loci impacting the abundance of >400 microbial strains and found an enrichment of genes involved in immune responses, signaling pathways, and secondary metabolism. We found loci associated with over half of the core microbiota (i.e., microbes in >80% of samples), regardless of field location. Finally, we show a genetic relationship between a basal plant immunity pathway and relative abundances of root microbiota. This study brings us closer to harnessing and manipulating beneficial microbial associations via host genetics.


Subject(s)
Microbiota , Panicum , Panicum/genetics , Genome-Wide Association Study , Bacteria/genetics , Genotype
17.
Data Brief ; 47: 108990, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36879606

ABSTRACT

This article presents metagenome-assembled genomes (MAGs) for both eukaryotic and prokaryotic organisms originating from the Arctic and Atlantic oceans, along with gene prediction and functional annotation for MAGs from both domains. Eleven samples from the chlorophyll-a maximum layer of the surface ocean were collected during two cruises in 2012; six from the Arctic in June-July on ARK-XXVII/1 (PS80), and five from the Atlantic in November on ANT-XXIX/1 (PS81). Sequencing and assembly was carried out by the Joint Genome Institute (JGI), who provide annotation of the assembled sequences, and 122 MAGs for prokaryotic organisms. A subsequent binning process identified 21 MAGs for eukaryotic organisms, mostly identified as Mamiellophyceae or Bacillariophyceae. The data for each MAG includes sequences in FASTA format, and tables of functional annotation of genes. For eukaryotic MAGs, transcript and protein sequences for predicted genes are available. A spreadsheet is provided summarising quality measures and taxonomic classifications for each MAG. These data provide draft genomes for uncultured marine microbes, including some of the first MAGs for polar eukaryotes, and can provide reference genetic data for these environments, or used in genomics-based comparison between environments.

18.
bioRxiv ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778228

ABSTRACT

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

19.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36811946

ABSTRACT

The mutualistic ectomycorrhizal (ECM) fungal genus Pisolithus comprises 19 species defined to date which colonize the roots of >50 hosts worldwide suggesting that substantial genomic and functional evolution occurred during speciation. To better understand this intra-genus variation, we undertook a comparative multi-omic study of nine Pisolithus species sampled from North America, South America, Asia, and Australasia. We found that there was a small core set of genes common to all species (13%), and that these genes were more likely to be significantly regulated during symbiosis with a host than accessory or species-specific genes. Thus, the genetic "toolbox" foundational to the symbiotic lifestyle in this genus is small. Transposable elements were located significantly closer to gene classes including effector-like small secreted proteins (SSPs). Poorly conserved SSPs were more likely to be induced by symbiosis, suggesting that they may be a class of protein that tune host specificity. The Pisolithus gene repertoire is characterized by divergent CAZyme profiles when compared with other fungi, both symbiotic and saprotrophic. This was driven by differences in enzymes associated with symbiotic sugar processing, although metabolomic analysis suggest that neither copy number nor expression of these genes is sufficient to predict sugar capture from a host plant or its metabolism in fungal hyphae. Our results demonstrate that intra-genus genomic and functional diversity within ECM fungi is greater than previously thought, underlining the importance of continued comparative studies within the fungal tree of life to refine our focus on pathways and evolutionary processes foundational to this symbiotic lifestyle.


Subject(s)
Basidiomycota , Mycorrhizae , Mycorrhizae/genetics , Symbiosis/genetics , Basidiomycota/genetics , Plant Roots , Sugars
20.
Genome Biol Evol ; 15(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36617272

ABSTRACT

Improved sequencing technologies have profoundly altered global views of fungal diversity and evolution. High-throughput sequencing methods are critical for studying fungi due to the cryptic, symbiotic nature of many species, particularly those that are difficult to culture. However, the low coverage genome sequencing (LCGS) approach to phylogenomic inference has not been widely applied to fungi. Here we analyzed 171 Kickxellomycotina fungi using LCGS methods to obtain hundreds of marker genes for robust phylogenomic reconstruction. Additionally, we mined our LCGS data for a set of nine rDNA and protein coding genes to enable analyses across species for which no LCGS data were obtained. The main goals of this study were to: 1) evaluate the quality and utility of LCGS data for both phylogenetic reconstruction and functional annotation, 2) test relationships among clades of Kickxellomycotina, and 3) perform comparative functional analyses between clades to gain insight into putative trophic modes. In opposition to previous studies, our nine-gene analyses support two clades of arthropod gut dwelling species and suggest a possible single evolutionary event leading to this symbiotic lifestyle. Furthermore, we resolve the mycoparasitic Dimargaritales as the earliest diverging clade in the subphylum and find four major clades of Coemansia species. Finally, functional analyses illustrate clear variation in predicted carbohydrate active enzymes and secondary metabolites (SM) based on ecology, that is biotroph versus saprotroph. Saprotrophic Kickxellales broadly lack many known pectinase families compared with saprotrophic Mucoromycota and are depauperate for SM but have similar numbers of predicted chitinases as mycoparasitic.


Subject(s)
Arthropods , Fungi , Humans , Animals , Phylogeny , Fungi/genetics , Arthropods/genetics , Base Sequence , Genome
SELECTION OF CITATIONS
SEARCH DETAIL
...