Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(7): 075802, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-33171456

ABSTRACT

Using the technique of double high-speed photography, we find that a femtosecond laser pulse is able to change the velocity of a moving domain wall in an yttrium iron garnet. The change depends on the light intensity and the domain wall velocity itself. To explain the results we propose a model in which the domain wall velocity is controlled by photo-induced generation of vertical Bloch lines.

2.
J Phys Condens Matter ; 32(1): 01LT01, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31505484

ABSTRACT

We derive an effective Lagrangian that facilitates the modeling of magnetization dynamics in a ferrimagnet with magnetization compensation point. The model is able to explain the earlier reported magnetization dynamics in the noncollinear magnetic phase triggered by a femtosecond laser pulse in GdFeCo amorphous alloy in the vicinity of spin-flop transition. Moreover, the described approach can be easily extended and applied to other cases of ultrafast magnetism in uniaxial f -d (rare-earth-transition metal) ferrimagnet near the magnetization compensation point in high magnetic fields. We assume that the primary effect of the femtosecond laser pulse is the ultrafast demagnetization of the ferrimagnet. We show that in the noncollinear magnetic phase, which can be prepared by applying external magnetic field above the spin-flop transition, such a demagnetization results in a torque acting on the magnetizations of both sublattices. It is shown that, similarly to the experiment, the amplitude and timescales of the dynamics strongly depend on temperature and applied magnetic field. In particular, in the vicinity of the spin-flop phase transition the amplitude dramatically increases while the dynamics exhibit a critical slowdown. We expect that the developed theoretical framework will boost further research of ultrafast magnetism of noncollinear spin systems.

3.
Nat Commun ; 10(1): 612, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30723207

ABSTRACT

Rapid growth of the area of ultrafast magnetism has allowed to achieve a substantial progress in all-optical magnetic recording with femtosecond laser pulses and triggered intense discussions about microscopic mechanisms responsible for this phenomenon. The typically used metallic medium nevertheless considerably limits the applications because of the unavoidable heat dissipation. In contrast, the recently demonstrated photo-magnetic recording in transparent dielectric garnet for all practical purposes is dissipation-free. This discovery raised question about selection rules, i.e. the optimal wavelength and the polarization of light, for such a recording. Here we report the computationally and experimentally identified workspace of parameters allowing photo-magnetic recording in Co-doped iron garnet using femtosecond laser pulses. The revealed selection rules indicate that the excitations responsible for the coupling of light to spins are d-d electron transitions in octahedral and tetrahedral Co-sublattices, respectively.

4.
Phys Rev Lett ; 122(2): 027202, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30720301

ABSTRACT

A heat-assisted route for subnanosecond magnetic recording is discovered for the dielectric bismuth-substituted yttrium iron garnet, known for possessing small magnetic damping. The experiments and simulations reveal that the route involves nonlinear magnetization precession, triggered by a transient thermal modification of the growth-induced crystalline anisotropy in the presence of a fixed perpendicular magnetic field. The pathway is rendered robust by the damping becoming anomalously large during the switching process. Subnanosecond deterministic magnetization reversal was achieved within just one-half of a precessional period, and this mechanism should be possible to implement in any material with suitably engineered dissimilar thermal derivatives of magnetization and anisotropy.

5.
Opt Lett ; 40(23): 5439-42, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26625020

ABSTRACT

We investigate surface plasmon-soliton (SPS) propagation in transverse magnetic field in heterostructures with Kerr nonlinearity. The nonlinear Schrödinger equation in the framework of perturbation theory has been derived for three cases: a single-interface metal/nonlinear-dielectric structure and double-interface structures of nonlinear-dielectric/metal/dielectric with either ferromagnetic or nonmagnetic dielectric. The effect of the magneto-optical nonreciprocity in the Schrödinger equation is found. The estimations show that the effect is the strongest for the double-interface structure with a magnetic substrate in the vicinity of the resonant plasmonic frequency. We have also shown that the external magnetic field modifies SPS amplitude and width.

SELECTION OF CITATIONS
SEARCH DETAIL
...