Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Article in English | MEDLINE | ID: mdl-38775873

ABSTRACT

PURPOSE: The current study evaluated the in vitro activities of ceftolozane/tazobactam (C/T), imipenem/relebactam (IMI/REL), and comparators against recent (2017-2021) clinical isolates of gram-negative bacilli from two countries in southern Europe. METHODS: Nine clinical laboratories (two in Greece; seven in Italy) each collected up to 250 consecutive gram-negative isolates per year from lower respiratory tract, intraabdominal, urinary tract, and bloodstream infection samples. MICs were determined by the CLSI broth microdilution method and interpreted using 2022 EUCAST breakpoints. ß-lactamase genes were identified in select ß-lactam-nonsusceptible isolate subsets. RESULTS: C/T inhibited the growth of 85-87% of Enterobacterales and 94-96% of ESBL-positive non-CRE NME (non-Morganellaceae Enterobacterales) isolates from both countries. IMI/REL inhibited 95-98% of NME, 100% of ESBL-positive non-CRE NME, and 98-99% of KPC-positive NME isolates from both countries. Country-specific differences in percent susceptible values for C/T, IMI/REL, meropenem, piperacillin/tazobactam, levofloxacin, and amikacin were more pronounced for Pseudomonas aeruginosa than Enterobacterales. C/T and IMI/REL both inhibited 84% of P. aeruginosa isolates from Greece and 91-92% of isolates from Italy. MBL rates were estimated as 4% of Enterobacterales and 10% of P. aeruginosa isolates from Greece compared to 1% of Enterobacterales and 3% of P. aeruginosa isolates from Italy. KPC rates among Enterobacterales isolates were similar in both countries (7-8%). OXA-48-like enzymes were only identified in Enterobacterales isolates from Italy (1%) while GES carbapenemase genes were only identified in P. aeruginosa isolates from Italy (2%). CONCLUSION: We conclude that C/T and IMI/REL may provide viable treatment options for many patients from Greece and Italy.

2.
Future Microbiol ; 19(6): 465-480, 2024.
Article in English | MEDLINE | ID: mdl-38252038

ABSTRACT

Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) are common healthcare-associated infections linked to high morbidity and mortality. Gram-negative pathogens, such as Pseudomonas aeruginosa, exhibit multidrug resistance and are recognized as major public health concerns, particularly among critically ill patients with HABP/VABP. Ceftolozane/tazobactam is a novel combination antibacterial agent comprising ceftolozane (a potent antipseudomonal cephalosporin) and tazobactam (a ß-lactamase inhibitor). Phase III trials have demonstrated non-inferiority of ceftolozane/tazobactam to comparators, leading to the approval of ceftolozane/tazobactam for the treatment of complicated urinary tract infections, complicated intra-abdominal infections, and nosocomial pneumonia. In this article, we review the clinical trial evidence and key real-world effectiveness data of ceftolozane/tazobactam for the treatment of serious healthcare-associated Gram-negative infections, focusing on patients with HABP/VABP.


Highlights from a review of ceftolozane/tazobactam for the treatment of serious infectionsSerious infections that can affect people in hospitals can cause serious illness or loss of life. Antibiotics are a type of medicine designed to kill the bacteria that cause these infections. However, bacteria have evolved over time, which means that antibiotics are not as effective at killing the bacteria and treating the infection. This is known as antibiotic resistance. To treat serious infections in hospital, there is a need for new antibiotics that can overcome this resistance and successfully fight off bacteria. This paper looks at an antibiotic known as ceftolozane/tazobactam (C/T), which can be used to treat people with serious infections that are picked up in hospitals. Clinical and laboratory studies have been reviewed to evaluate how effective, safe, and suitable C/T is for patients. The studies discussed in this paper highlight how well C/T works in people with serious infections, including those who are already ill and have been put on a ventilator to help with their breathing. Some of these studies showed that C/T worked well against lots of different types of bacteria that are known to cause serious infections in hospital and are linked to a high risk of death. Antibiotic resistance is a major problem all over the world. There is a need for effective antibiotics that can treat a range of infections caused by resistant bacteria. The results of this paper show that there is a lot of evidence to support the use of C/T in hospitals for people with serious bacterial infections.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Tazobactam , Humans , Cephalosporins/therapeutic use , Tazobactam/therapeutic use , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Cross Infection/microbiology , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Pseudomonas aeruginosa/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Clinical Trials as Topic , Drug Resistance, Multiple, Bacterial , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Healthcare-Associated Pneumonia/drug therapy , Healthcare-Associated Pneumonia/microbiology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , beta-Lactamase Inhibitors/therapeutic use , Clinical Trials, Phase III as Topic
3.
JAC Antimicrob Resist ; 5(4): dlad098, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37577157

ABSTRACT

Objectives: To evaluate the in vitro activities of ceftolozane/tazobactam and imipenem/relebactam against clinical isolates of Gram-negative bacilli collected in four central and northern European countries (Belgium, Norway, Sweden, Switzerland) during 2017-21. Methods: Participating clinical laboratories each collected up to 250 consecutive Gram-negative isolates per year from patients with bloodstream, intraabdominal, lower respiratory tract or urinary tract infections. MICs were determined by CLSI broth microdilution and interpreted using 2022 EUCAST breakpoints. ß-Lactamase genes were identified in select ß-lactam-non-susceptible isolate subsets. Results: Ninety-five percent of all Enterobacterales (n = 4158), 95% of ESBL-positive non-carbapenem-resistant Enterobacterales (non-CRE) phenotype Escherichia coli and 85% of ESBL-positive non-CRE phenotype Klebsiella pneumoniae were ceftolozane/tazobactam susceptible. By country, 88% (Belgium), 91% (Sweden, Switzerland) and 96% (Norway) of ESBL-positive non-CRE phenotype Enterobacterales were ceftolozane/tazobactam susceptible. Greater than ninety-nine percent of non-Morganellaceae Enterobacterales and all ESBL-positive non-CRE phenotype Enterobacterales were imipenem/relebactam susceptible. Ceftolozane/tazobactam (96%) and imipenem/relebactam (95%) inhibited most Pseudomonas aeruginosa (n = 823). Both agents retained activity against ≥75% of cefepime-resistant, ceftazidime-resistant and piperacillin/tazobactam-resistant isolates; 56% and 43% of meropenem-resistant isolates were ceftolozane/tazobactam susceptible and imipenem/relebactam susceptible, respectively. By country, 94% (Belgium), 95% (Sweden) and 100% (Norway, Switzerland) of P. aeruginosa were ceftolozane/tazobactam susceptible and 93% (Sweden) to 98% (Norway, Switzerland) were imipenem/relebactam susceptible. Carbapenemase gene carriage among Enterobacterales and P. aeruginosa isolates was generally low (<1%) or completely absent with one exception: an estimated 2.7% of P. aeruginosa isolates from Belgium carried an MBL. Conclusions: Recent clinical isolates of Enterobacterales and P. aeruginosa collected in four central and northern European countries were highly susceptible (≥95%) to ceftolozane/tazobactam and imipenem/relebactam.

4.
JAC Antimicrob Resist ; 5(3): dlad080, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37388237

ABSTRACT

Objectives: To determine susceptibility profiles and ß-lactamase content for ceftolozane/tazobactam-resistant and imipenem/relebactam-resistant Pseudomonas aeruginosa isolates collected in eight global regions during 2016-21. Methods: Broth microdilution MICs were interpreted using CLSI breakpoints. PCR to identify ß-lactamase genes or WGS was performed on selected isolate subsets. Results: Ceftolozane/tazobactam-resistant [from 0.6% (Australia/New Zealand) to 16.7% (Eastern Europe)] and imipenem/relebactam-resistant [from 1.3% (Australia/New Zealand) to 13.6% (Latin America)] P. aeruginosa varied by geographical region. Globally, 5.9% of isolates were both ceftolozane/tazobactam resistant and imipenem/relebactam resistant; 76% of these isolates carried MBLs. Most ceftolozane/tazobactam-resistant/imipenem/relebactam-susceptible isolates carried ESBLs (44%) or did not carry non-intrinsic (acquired) ß-lactamases (49%); 95% of imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible isolates did not carry non-intrinsic ß-lactamases. Isolates that carried indicators of strong PDC (Pseudomonas-derived cephalosporinase) up-regulation without a mutation known to expand the spectrum of PDC, or non-intrinsic ß-lactamases, showed an 8-fold increase in ceftolozane/tazobactam modal MIC; however, this rarely (3%) resulted in ceftolozane/tazobactam resistance. Isolates with a PDC mutation and an indicator for PDC upregulation were ceftolozane/tazobactam non-susceptible (MIC,  ≥ 8 mg/L). MICs ranged widely (1 to >32 mg/L) for isolates with a PDC mutation and no positively identified indicator for PDC up-regulation. Imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible isolates without non-intrinsic ß-lactamases frequently (91%) harboured genetic lesions implying OprD loss of function; however, this finding alone did not account for this phenotype. Among imipenem-non-susceptible isolates without non-intrinsic ß-lactamases, implied OprD loss only shifted the distribution of imipenem/relebactam MICs up by 1-2 doubling dilutions, resulting in ∼10% imipenem/relebactam-resistant isolates. Conclusions: P. aeruginosa with ceftolozane/tazobactam-resistant/imipenem/relebactam-susceptible and imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible phenotypes were uncommon and harboured diverse resistance determinants.

5.
Open Forum Infect Dis ; 10(6): ofad225, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383243

ABSTRACT

Background: In the RESTORE-IMI 2 trial, imipenem/cilastatin/relebactam (IMI/REL) was noninferior to piperacillin/tazobactam in treating hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia. This post hoc analysis was conducted to determine independent predictors of efficacy outcomes in the RESTORE-IMI 2 trial, to assist in treatment decision making. Methods: A stepwise multivariable regression analysis was conducted to identify variables that were independently associated with day 28 all-cause mortality (ACM), favorable clinical response at early follow-up (EFU), and favorable microbiologic response at end of treatment (EOT). The analysis accounted for the number of baseline infecting pathogens and in vitro susceptibility to randomized treatment. Results: Vasopressor use, renal impairment, bacteremia at baseline, and Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II scores ≥15 were associated with a greater risk of day 28 ACM. A favorable clinical response at EFU was associated with normal renal function, an APACHE II score <15, no vasopressor use, and no bacteremia at baseline. At EOT, a favorable microbiologic response was associated with IMI/REL treatment, normal renal function, no vasopressor use, nonventilated pneumonia at baseline, intensive care unit admission at randomization, monomicrobial infections at baseline, and absence of Acinetobacter calcoaceticus-baumannii complex at baseline. These factors remained significant after accounting for polymicrobial infection and in vitro susceptibility to assigned treatment. Conclusions: This analysis, which accounted for baseline pathogen susceptibility, validated well-recognized patient- and disease-related factors as independent predictors of clinical outcomes. These results lend further support to the noninferiority of IMI/REL to piperacillin/tazobactam and suggests that pathogen eradication may be more likely with IMI/REL. Clinical Trials Registration: NCT02493764.

6.
BMC Microbiol ; 23(1): 165, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312049

ABSTRACT

BACKGROUND: Carbapenem-resistant bacteria are an increasing problem in clinical practice; thus, it is important to identify ß-lactamase inhibitors (e.g., relebactam) that can restore carbapenem susceptibility. We report analyses of relebactam enhancement of imipenem activity against both imipenem-nonsusceptible (NS) and imipenem-susceptible (S) Pseudomonas aeruginosa and Enterobacterales. Gram-negative bacterial isolates were collected for the ongoing Study for Monitoring Antimicrobial Resistance Trends global surveillance program. Clinical and Laboratory Standards Institute-defined broth microdilution minimum inhibitory concentrations (MIC) were used to determine the imipenem and imipenem/relebactam antibacterial susceptibilities of P. aeruginosa and Enterobacterales isolates. RESULTS: Between 2018 and 2020, 36.2% of P. aeruginosa (N = 23,073) and 8.2% of Enterobacterales (N = 91,769) isolates were imipenem-NS. Relebactam restored imipenem susceptibility in 64.1% and 49.4% of imipenem-NS P. aeruginosa and Enterobacterales isolates, respectively. Restoration of susceptibility was largely observed among K. pneumoniae carbapenemase-producing Enterobacterales and carbapenemase-negative P. aeruginosa. Relebactam also caused a lowering of imipenem MIC among imipenem-S P. aeruginosa and Enterobacterales isolates from chromosomal Ambler class C ß-lactamase (AmpC)-producing species. For both imipenem-NS and imipenem-S P. aeruginosa isolates, relebactam reduced the imipenem MIC mode from 16 µg/mL to 1 µg/mL and from 2 µg/mL to 0.5 µg/mL, respectively, compared with imipenem alone. CONCLUSIONS: Relebactam restored imipenem susceptibility among nonsusceptible isolates of P. aeruginosa and Enterobacterales and enhanced imipenem susceptibility among susceptible isolates of P. aeruginosa and isolates from Enterobacterales species that can produce chromosomal AmpC. The reduced imipenem modal MIC values with relebactam may result in a higher probability of target attainment in patients.


Subject(s)
Gammaproteobacteria , Imipenem , Humans , Imipenem/pharmacology , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Carbapenems
7.
Int J Antimicrob Agents ; 62(3): 106900, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37354921

ABSTRACT

OBJECTIVES: To describe the in vitro activity of imipenem/relebactam (IMR) against non-Morganellaceae Enterobacterales (NME) and Pseudomonas aeruginosa, including piperacillin/tazobactam-nonsusceptible and meropenem-nonsusceptible isolates, infecting hospitalized patients in the Asia-Pacific region. METHODS: From 2017 to 2020, 49 clinical laboratories in nine countries in the Asia-Pacific region participated in the SMART global surveillance program and contributed 26 783 NME and 6383 P. aeruginosa. Minimum inhibitory concentrations (MICs) were determined using CLSI broth microdilution and interpreted using CLSI M100 (2021) breakpoints. ß-Lactamase genes were identified in selected isolate subsets (2017-2020) and oprD was sequenced in molecularly characterized P. aeruginosa collected in 2020. RESULTS: Amikacin (97.9% susceptible), IMR (95.8%), meropenem (95.4%), and imipenem (92.6%) were the most active agents against NME. Among piperacillin/tazobactam-nonsusceptible NME (n=4070), 76.1% were IMR-susceptible (range by country, 97.5% [New Zealand] to 50.6% [Vietnam]); 22.4% of meropenem-nonsusceptible NME (n=1225) were IMR-susceptible (range by country, 68.8% [South Korea] to 7.6% [Thailand]). A total of 2.7% of NME carried a metallo-ß-lactamase (MBL), 0.9% an OXA-48-like carbapenemase (MBL-negative), and 0.7% a KPC (MBL-negative). Amikacin (94.0% susceptible) and IMR (90.3%) were the most active agents against P. aeruginosa; 71.2% of isolates were imipenem-susceptible. Relebactam increased susceptibility to imipenem by 25.6% (from 40.5% to 66.1%) in piperacillin/tazobactam-nonsusceptible and by 44.8% (from 7.1% to 51.9%) in meropenem-nonsusceptible P. aeruginosa. Only 4.3% of P. aeruginosa were MBL-positive. A total of 70.3% (90/128) of IMR-nonsusceptible P. aeruginosa were oprD-deficient. CONCLUSION: In 2017-2020, 96% of NME and 90% of P. aeruginosa from the Asia-Pacific region were IMR-susceptible. IMR percent susceptible rates were higher in countries with lower MBL carriage.


Subject(s)
Amikacin , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Imipenem/pharmacology , beta-Lactamases/genetics , Tazobactam , Piperacillin/pharmacology , Thailand , Microbial Sensitivity Tests
8.
Braz J Infect Dis ; 27(3): 102775, 2023.
Article in English | MEDLINE | ID: mdl-37169345

ABSTRACT

Carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa are being isolated from patient specimens with increasing frequency in Latin America and worldwide. The current study provides an initial description of the in vitro activity of imipenem/relebactam (IMR) against non-Morganellaceae Enterobacterales (NME) and P. aeruginosa infecting hospitalized patients in Latin America. From 2018 to 2020, 37 clinical laboratories in nine Latin American countries participated in the SMART global surveillance program and contributed 15,466 NME and 3408 P aeruginosa isolates. MICs for IMR and seven comparators were determined using CLSI broth microdilution and interpreted by CLSI M100 (2022) breakpoints. ß-lactamase genes were identified in selected isolate subsets. IMR (96.9% susceptible), amikacin (95.9%), meropenem (90.7%), and imipenem (88.7%) were the most active agents against NME. Among piperacillin/tazobactam-nonsusceptible NME (n = 4124), 90.4% of isolates were IMR-susceptible (range by country, 97.2 [Chile] to 67.0% [Guatemala]) and among meropenem-nonsusceptible NME isolates (n = 1433), 74.0% were IMR-susceptible (94.1% [Puerto Rico] to 5.1% [Guatemala]). Overall, 6.3% of all collected NME isolates carried a KPC (metallo-ß-lactamase [MBL]-negative), 1.8% an MBL, 0.4% an OXA-48-like carbapenemase (MBL-negative), and 0.1% a GES carbapenemase (MBL-negative). Amikacin (85.2% susceptible) and IMR (80.1%) were the most active agents against P. aeruginosa; only 56.5% of isolates were imipenem-susceptible. Relebactam increased susceptibility to imipenem by 22.0% (from 23.9% to 45.9%) in piperacillin/tazobactam-nonsusceptible isolates (n = 1031) and by 35.5% (from 5.5% to 41.0%) in meropenem-nonsusceptible isolates (n = 1128). Overall, 7.6% of all collected P. aeruginosa isolates were MBL-positive and 0.7% carried a GES carbapenemase. In conclusion, in 2018‒2020, almost all NME (97%) and most P. aeruginosa (80%) isolates from Latin America were IMR-susceptible. Continued surveillance of the in vitro activities of IMR and comparator agents against Gram-negative pathogens, and monitoring for ß-lactamase changes (in particular for increases in MBLs), is warranted.


Subject(s)
Amikacin , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Latin America , Amikacin/pharmacology , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Imipenem/pharmacology , beta-Lactamases/genetics , Piperacillin , Tazobactam , Microbial Sensitivity Tests
9.
J Glob Antimicrob Resist ; 33: 260-266, 2023 06.
Article in English | MEDLINE | ID: mdl-37086892

ABSTRACT

OBJECTIVES: The aim of this study was to estimate carbapenem resistance in Pseudomonas aeruginosa and Enterobacterales isolated from infected patients in intensive care unit (ICU) and non-ICU hospital wards in Hong Kong. METHODS: Isolates of Pseudomonas aeruginosa (ICU, n = 35; non-ICU, n = 264) and Enterobacterales (ICU, n = 129; non-ICU, n = 1390) were collected in four Hong Kong hospitals in 2017-2020. Clinical and Laboratory Standards Institute broth microdilution minimum inhibitory concentrations (MICs) were interpreted according to Clinical and Laboratory Standards Institute 2021 M100 breakpoints. ß-lactamase genes were identified in imipenem-, imipenem/relebactam-, and ceftolozane/tazobactam-nonsusceptible isolates. RESULTS: Ceftolozane/tazobactam demonstrated potent in vitro activity against both P. aeruginosa (ICU, 88.6%; non-ICU, 98.5%) and Enterobacterales (96.1%; 97.1%). Percent susceptible values for P. aeruginosa isolates from ICU and non-ICU patients, respectively, were as follows: meropenem (ICU, 74.3%; non-ICU, 84.1%) and imipenem (68.6%; 73.1%). Only 1 of 77 isolates tested for ß-lactamase genes carried a carbapenemase (VIM-2). Percent susceptible values for Enterobacterales isolates from ICU and non-ICU patients were as follows: meropenem (100%; 99.4%), ertapenem (100%; 98.0%), and imipenem (88.4%; 88.6%). A total of 62 Enterobacterales isolates were tested for ß-lactamase genes. Only three isolates carried a carbapenemase gene; two (both Escherichia coli) were metallo-ß-lactamase-positive (both NDM-5), and one (Klebsiella pneumoniae) was OXA-48-like-positive. CONCLUSIONS: Carbapenem-nonsusceptible isolates of P. aeruginosa were common (>15% of isolates). P. aeruginosa percent susceptible values for ceftolozane/tazobactam (97.3% susceptible overall) were ≥14% higher than those for carbapenems in both ICU and non-ICU isolates. Carbapenemases were rare among both P. aeruginosa (one isolate) and Enterobacterales (three isolates). Most Enterobacterales isolates tested from ICU and non-ICU patients in Hong Kong hospitals in 2017-2020 were susceptible to meropenem and ertapenem (≥98%); imipenem was less active (89% susceptible).


Subject(s)
Anti-Bacterial Agents , Imipenem , Humans , Meropenem , Ertapenem , Hong Kong , Anti-Bacterial Agents/pharmacology , Imipenem/pharmacology , Tazobactam , Carbapenems/pharmacology , beta-Lactamases/genetics , Pseudomonas aeruginosa/genetics , Escherichia coli , Intensive Care Units
10.
JAC Antimicrob Resist ; 5(2): dlad011, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36880088

ABSTRACT

Objectives: To assess the relationship between renal function and efficacy/safety of imipenem/cilastatin/relebactam for the treatment of hospital-acquired/ventilator-associated pneumonia (HABP/VABP) from RESTORE-IMI 2 and determine the PTA. Methods: Adults with HABP/VABP were randomized 1:1 to IV imipenem/cilastatin/relebactam 1.25 g or piperacillin/tazobactam 4.5 g every 6 h for 7-14 days. Initial doses were selected by CLCR and adjusted thereafter, as appropriate. Outcomes included Day 28 all-cause mortality (ACM), clinical response, microbiological response and adverse events. Population pharmacokinetic modelling and Monte Carlo simulations assessed PTA. Results: The modified ITT population comprised those with normal renal function (n = 188), augmented renal clearance (ARC; n = 88), mild renal impairment (RI; n = 124), moderate RI (n = 109) and severe RI (n = 22). ACM rates were comparable between treatment arms among all baseline renal function categories. Clinical response rates were comparable between treatment arms for participants with RI and normal renal function but were higher (91.7% versus 44.4%) for imipenem/cilastatin/relebactam-treated versus piperacillin/tazobactam-treated participants with CLCR ≥250 mL/min (n = 21). Microbiologic response rates were comparable between treatment arms for participants with RI but higher among those treated with imipenem/cilastatin/relebactam in participants with CLCR ≥90 mL/min (86.6% versus 67.2%). Adverse events were comparable between treatment arms across renal function categories. Joint PTA was >98% for key pathogen MICs for susceptible pathogens (MIC ≤2 mg/L). Conclusions: Prescribing information-defined dose adjustments in participants with baseline RI and full dosing of imipenem/cilastatin/relebactam 1.25 g every 6 h for participants with normal renal function or augmented renal clearance achieved sufficiently high drug exposures and favourable safety and efficacy profiles.

11.
Int J Antimicrob Agents ; 61(5): 106772, 2023 May.
Article in English | MEDLINE | ID: mdl-36878411

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections compromise both empirical and definitive antimicrobial therapies. The Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance program identified 943 MDR P. aeruginosa (from a total of 4086 P. aeruginosa isolates [23.1%]) collected at 32 clinical laboratories in six countries in Western Europe from 2017 to 2020. Minimum inhibitory concentrations (MICs) for ceftolozane/tazobactam and 10 comparator agents were determined by broth microdilution and interpreted using 2021 EUCAST breakpoints. ß-lactamase genes were identified in selected isolate subsets. Most isolates of P. aeruginosa in Western Europe (93.3%) were ceftolozane/tazobactam-susceptible. A total of 23.1% of P. aeruginosa isolates were MDR. Of these, 72.0% were ceftolozane/tazobactam-susceptible, which is similar to that for ceftazidime/avibactam (73.6%) but >40% higher than for carbapenems, piperacillin/tazobactam, third- and fourth-generation cephalosporins, and levofloxacin. Metallo-ß-lactamases (MBLs) were carried by 8.8% of molecularly characterized MDR P. aeruginosa, and 7.6% of molecularly characterized MDR isolates carried Guiana Extended Spectrum (GES) carbapenemases. MBLs were identified in isolates from all six countries, ranging from 3.2% of all P. aeruginosa isolates from Italy to 0.4% of all isolates from the United Kingdom. Acquired ß-lactamases were not identified in 80.0% of molecularly characterized MDR P. aeruginosa isolates. Percentages of MDR isolates without detected ß-lactamases were higher in the United Kingdom (97.7%), Spain (88.2%), France (88.1%), and Germany (84.7%) than in Portugal (63.0%) and Italy (61.3%), where carbapenemases were more prevalent. Ceftolozane/tazobactam is an important treatment option for patients infected with MDR P. aeruginosa that are not susceptible to first-line antipseudomonal agents.


Subject(s)
Anti-Infective Agents , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Penicillanic Acid/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Tazobactam/pharmacology , Tazobactam/therapeutic use , Ceftazidime/pharmacology , Anti-Infective Agents/pharmacology , beta-Lactamases/pharmacology , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Drug Resistance, Multiple, Bacterial/genetics
12.
J Med Microbiol ; 72(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36763081

ABSTRACT

Introduction. Piperacillin/tazobactam and carbapenems are important agents for the treatment of serious Gram-negative infections in hospitalized patients. Resistance to both agents is a significant concern in clinical isolates of Enterobacterales and Pseudomonas aeruginosa; new agents with improved activity are needed.Gap Statement. Publication of current, region-specific data describing the in vitro activity of newer agents such as imipenem/relebactam (IMR) against piperacillin/tazobactam-resistant and carbapenem-resistant Enterobacterales and P. aeruginosa are needed to support their clinical use.Aim. To describe the in vitro activity of IMR against non-Morganellaceae Enterobacterales (NME) and P. aeruginosa isolated from bloodstream, intra-abdominal and urinary tract infection samples by hospital laboratories in Western Europe with a focus on the activity of IMR against piperacillin/tazobactam-resistant and meropenem-resistant isolates.Methodology. From 2018 to 2020, 29 hospital laboratories in six countries in Western Europe participated in the SMART global surveillance programme and contributed 9487 NME and 1004 P. aeruginosa isolates. MICs were determined by CLSI broth microdilution testing and interpreted by EUCAST (2021) breakpoints. ß-Lactamase genes were identified in selected isolate subsets (2018-2020) and oprD sequenced in molecularly characterized P. aeruginosa (2020).Results. IMR (99.4 % susceptible), amikacin (98.0 %), meropenem (97.7 %) and imipenem (97.6 %) were the most active agents against NME; 83.1 % of NME were piperacillin/tazobactam-susceptible. Relebactam increased imipenem susceptibility of NME from Italy by 8.3 %, from Portugal by 2.9 %, and from France, Germany, Spain and the UK by <1 %. In total, 96.4 % of piperacillin/tazobactam-resistant (n=1601) and 73.7 % of meropenem-resistant (n=152) NME were IMR-susceptible. Also, 0.4 % of NME were MBL-positive, 0.9 % OXA-48-like-positive (MBL-negative) and 1.5 % KPC-positive (MBL-negative). Amikacin (95.4 % susceptible) and IMR (94.1 %) were the most active agents against P. aeruginosa; 81.7 % of isolates were imipenem-susceptible and 79.6 % were piperacillin/tazobactam-susceptible. Relebactam increased susceptibility to imipenem by 12.5 % overall (range by country, 4.3-17.5 %); and by 30.7 % in piperacillin/tazobactam-resistant and 24.3 % in meropenem-resistant P. aeruginosa. In total, 1.6 % of P. aeruginosa isolates were MBL-positive. Seven of eight molecularly characterized IMR-resistant P. aeruginosa isolates from 2020 were oprD-deficient.Conclusion. IMR may be a potential treatment option for bloodstream, intra-abdominal and urinary tract infections caused by NME and P. aeruginosa in Western Europe, including infections caused by piperacillin/tazobactam-resistant and meropenem-resistant isolates.


Subject(s)
Pseudomonas Infections , Urinary Tract Infections , Humans , Meropenem/pharmacology , Pseudomonas aeruginosa/genetics , Amikacin , Anti-Bacterial Agents/pharmacology , Imipenem , Urinary Tract Infections/epidemiology , Piperacillin, Tazobactam Drug Combination , Europe/epidemiology , Microbial Sensitivity Tests , Pseudomonas Infections/epidemiology , Cephalosporins
13.
Eur J Clin Microbiol Infect Dis ; 42(3): 365-370, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36670243

ABSTRACT

Antimicrobial susceptibility was determined for clinical gram-negative isolates from Czech Republic, Hungary, and Poland, where published data for ceftolozane/tazobactam (C/T) and imipenem/relebactam (IMI/REL) is scarce. C/T was active against 94.3% of Enterobacterales, 10-18% higher than the tested cephalosporins and piperacillin/tazobactam. IMI/REL was the most active tested agent against non-Morganellaceae Enterobacterales (99.7% susceptible). C/T was the most active among all studied agents except colistin against Pseudomonas aeruginosa (96.0% susceptible); susceptibility to IMI/REL was 90.7%. C/T maintained activity against 73.7-85.3% of ß-lactam-resistant or multidrug-resistant P. aeruginosa subsets. C/T and IMI/REL could represent important treatment options for patients from these countries.


Subject(s)
Pseudomonas Infections , Humans , Czech Republic , Poland , Hungary , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/therapeutic use , Tazobactam/pharmacology , Tazobactam/therapeutic use , Pseudomonas aeruginosa , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests
14.
JAC Antimicrob Resist ; 5(1): dlad003, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36694850

ABSTRACT

Objectives: To describe the in vitro activity of imipenem/relebactam against non-Morganellaceae Enterobacterales (NME) and Pseudomonas aeruginosa recently isolated from lower respiratory tract infection samples by hospital laboratories in Western Europe. Methods: From 2018 to 2020, 29 hospital laboratories in six countries in Western Europe participated in the SMART global surveillance programme and contributed 4414 NME and 1995 P. aeruginosa isolates. MICs were determined using the CLSI broth microdilution method and interpreted by EUCAST (2021) breakpoints. ß-Lactamase genes were identified in selected isolate subsets (2018-20) and oprD sequenced in molecularly characterized P. aeruginosa (2020). Results: Imipenem/relebactam (99.1% susceptible), amikacin (97.2%), meropenem (96.1%) and imipenem (95.9%) were the most active agents tested against NME; by country, relebactam increased imipenem susceptibility from <1% (France, Germany, UK) to 11.0% (Italy). A total of 96.0% of piperacillin/tazobactam-resistant (n = 990) and 81.1% of meropenem-resistant (n = 106) NME were imipenem/relebactam-susceptible. Only 0.5% of NME were MBL positive, 0.9% were OXA-48-like-positive (MBL negative) and 2.8% were KPC positive (MBL negative). Amikacin (91.5% susceptible) and imipenem/relebactam (91.4%) were the most active agents against P. aeruginosa; 72.3% of isolates were imipenem-susceptible. Relebactam increased susceptibility to imipenem by 34.4% (range by country, 39.1%-73.5%) in piperacillin/tazobactam-resistant and by 37.4% (3.1%-40.5%) in meropenem-resistant P. aeruginosa. Only 1.8% of P. aeruginosa isolates were MBL positive. Among molecularly characterized imipenem/relebactam-resistant P. aeruginosa isolates from 2020, 90.9% (30/33) were oprD deficient. Conclusions: Imipenem/relebactam appears to be a potential treatment option for lower respiratory tract infections caused by piperacillin/tazobactam- and meropenem-resistant NME and P. aeruginosa in Western Europe.

15.
Braz. j. infect. dis ; 27(3): 102775, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447667

ABSTRACT

Abstract Carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa are being isolated from patient specimens with increasing frequency in Latin America and worldwide. The current study provides an initial description of the in vitro activity of imipenem/relebactam (IMR) against non-Morganellaceae Enterobacterales (NME) and P. aeruginosa infecting hospitalized patients in Latin America. From 2018 to 2020, 37 clinical laboratories in nine Latin American countries participated in the SMART global surveillance program and contributed 15,466 NME and 3408 P aeruginosa isolates. MICs for IMR and seven comparators were determined using CLSI broth microdilution and interpreted by CLSI M100 (2022) breakpoints. β-lactamase genes were identified in selected isolate subsets. IMR (96.9% susceptible), amikacin (95.9%), meropenem (90.7%), and imipenem (88.7%) were the most active agents against NME. Among piperacillin/tazobactam-nonsusceptible NME (n= 4124), 90.4% of isolates were IMR-susceptible (range by country, 97.2 [Chile] to 67.0% [Guatemala]) and among meropenem-nonsusceptible NME isolates (n= 1433), 74.0% were IMR-susceptible (94.1% [Puerto Rico] to 5.1% [Guatemala]). Overall, 6.3% of all collected NME isolates carried a KPC (metallo-β-lactamase [MBL]-negative), 1.8% an MBL, 0.4% an OXA-48-like carbapenemase (MBL-negative), and 0.1% a GES carbapenemase (MBL-negative). Amikacin (85.2% susceptible) and IMR (80.1%) were the most active agents against P. aeruginosa; only 56.5% of isolates were imipenem-susceptible. Relebactam increased susceptibility to imipenem by 22.0% (from 23.9% to 45.9%) in piperacillin/tazobactam-nonsusceptible isolates (n= 1031) and by 35.5% (from 5.5% to 41.0%) in meropenem-nonsusceptible isolates (n= 1128). Overall, 7.6% of all collected P. aeruginosa isolates were MBL-positive and 0.7% carried a GES carbapenemase. In conclusion, in 2018‒2020, almost all NME (97%) and most P. aeruginosa(80%) isolates from Latin America were IMR-susceptible. Continued surveillance of the in vitro activities of IMR and comparator agents against Gram-negative pathogens, and monitoring for β-lactamase changes (in particular for increases in MBLs), is warranted.

16.
Int J Infect Dis ; 125: 250-257, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244599

ABSTRACT

OBJECTIVES: We evaluated the activity of ceftolozane/tazobactam (C/T), and comparators against clinical Pseudomonas aeruginosa isolates collected for the global Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance program in ten countries in the Middle East and Africa to augment scarce standardized surveillance data in this region. METHODS: Minimum inhibitory concentrations (MICs) were determined using Clinical and Laboratory Standards Institute broth microdilution and interpreted with European Committee on Antimicrobial Susceptibility Testing breakpoints. P. aeruginosa isolates testing with C/T MIC >4 mg/l or imipenem MIC >2 mg/l were screened for ß-lactamase genes. RESULTS: C/T was active against 91.4% and 87.0% of P. aeruginosa isolates from the Middle East and Africa, respectively (14-21 and 7-16 percentage points higher than most ß-lactam comparators, respectively). Considerable variation in susceptibility was seen across countries, which largely correlated with the observed prevalence of carbapenemases and/or extended-spectrum ß-lactamases. Differences across countries were smaller for C/T than for the ß-lactam comparators, ranging from 81% C/T-susceptible among isolates from Jordan to 95% for Qatar. Among subsets resistant to meropenem, ceftazidime, or piperacillin/tazobactam, C/T maintained activity against 51-73% of isolates from the Middle East and against 27-54% from Africa (where metallo-ß-lactamase and GES carbapenemase rates were higher). CONCLUSION: Given the desirability of ß-lactam use among clinicians, C/T represents an important option in the treatment of infections caused by P. aeruginosa.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Drug Resistance, Bacterial , Tazobactam/pharmacology , Tazobactam/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Microbial Sensitivity Tests , Ceftazidime/therapeutic use , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial
17.
Antibiotics (Basel) ; 11(5)2022 May 14.
Article in English | MEDLINE | ID: mdl-35625304

ABSTRACT

Antimicrobial resistance is a global public health threat, and gram-negative bacteria, such as Enterobacterales and Pseudomonas aeruginosa, are particularly problematic with difficult-to-treat resistance phenotypes. To reduce morbidity and mortality, a reduction in the time to effective antimicrobial therapy (TTET) is needed, especially among critically ill patients. The antibiogram is an effective clinical tool that can provide accurate antimicrobial susceptibility information and facilitate early antimicrobial optimization, decrease TTET, and improve outcomes such as mortality, hospital length of stay, and costs. Guidance is lacking on how to validate the susceptibility to new antibacterial agents. Commonly used traditional and combination antibiograms may not adequately assist clinicians in making treatment decisions. Challenges with the current susceptibility testing of new ß-lactam/ß-lactamase inhibitor combinations persist, impacting the appropriate antibacterial choice and patient outcomes. Novel antibiograms such as syndromic antibiograms that incorporate resistant gram-negative phenotypes and/or minimum inhibitory concentration distributions may assist in determining the need for earlier susceptibility testing or help define an earlier optimal use of the new ß-lactam/ß-lactamase inhibitors. The purpose of this review is to emphasize novel antibiogram approaches that are capable of improving the time to susceptibility testing and administration for new ß-lactam/ß-lactamase inhibitors so that they are earlier in a patient's treatment course.

18.
Antimicrob Agents Chemother ; 66(5): e0018922, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35491836

ABSTRACT

Ceftolozane-tazobactam (C/T), imipenem-relebactam (IMR), and ceftazidime-avibactam (CZA) were tested against 2,531 P. aeruginosa strains isolated from patients in the United States from 2018 to 2020 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) surveillance program. MICs were determined by CLSI broth microdilution and interpreted using CLSI M100 (2021) breakpoints. Imipenem-, IMR-, or C/T-nonsusceptible isolates were screened for ß-lactamase genes: 96.4% of all isolates and ≥70% of multidrug-resistant (MDR), pan-ß-lactam-nonsusceptible, and difficult-to-treat resistance (DTR) isolates were C/T-susceptible; 52.2% of C/T-nonsusceptible isolates remained susceptible to IMR compared to 38.9% for CZA; and 1.7% of isolates tested were nonsusceptible to both C/T and IMR versus 2.2% of isolates with a C/T-nonsusceptible and CZA-resistant phenotype (a difference of 12 isolates). C/T and IMR modal MICs for pan-ß-lactam-nonsusceptible isolates remained at or below their respective susceptible MIC breakpoints from 2018 to 2020, while the modal MIC for CZA increased 2-fold from 2018 to 2019 and exceeded the CZA-susceptible MIC breakpoint in both 2019 and 2020. Only six of 802 molecularly characterized isolates carried a metallo-ß-lactamase, and two isolates carried a GES carbapenemase. Most P. aeruginosa isolates were C/T-susceptible, including many with MDR, pan-ß-lactam-nonsusceptible, DTR, CZA-resistant, and IMR-nonsusceptible phenotypes. While C/T was the most active antipseudomonal agent, IMR demonstrated greater activity than CZA against isolates nonsusceptible to C/T.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , Cephalosporins/pharmacology , Drug Combinations , Hospitals , Humans , Imipenem/pharmacology , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Tazobactam/pharmacology , United States , beta-Lactamases/genetics
19.
J Med Microbiol ; 71(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-35451945

ABSTRACT

Introduction. Ceftolozane/tazobactam was approved by the Drug Office, Department of Health, Government of the Hong Kong Special Administrative Region in 2017.Hypothesis/Gap Statement. Currently the in vitro activity of ceftolozane/tazobactam against Gram-negative pathogens isolated from patients in Hong Kong is undocumented. It would be prudent to document the activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and Enterobacterales isolated from hospitalized patients in Hong Kong.Aim. To describe the in vitro susceptibility of recent clinical isolates of P. aeruginosa and the two most common Enterobacterales species (Klebsiella pneumoniae, Escherichia coli) cultured from respiratory tract, intra-abdominal, urinary tract and bloodstream infection samples to ceftolozane/tazobactam and other commonly used antimicrobial agents.Methodology. CLSI-defined broth microdilution MICs were determined and interpreted for Gram-negative isolates collected in Hong Kong from 2017 to 2019 by the SMART surveillance programme.Results. For P. aeruginosa, 96.7 % of isolates (n=210) were susceptible to ceftolozane/tazobactam, while susceptibility rates were ≥14 % lower to meropenem (82.9 % susceptible), cefepime (82.4 %), ceftazidime (81.4 %), piperacillin/tazobactam (76.7 %) and levofloxacin (79.5 %). Ceftolozane/tazobactam inhibited 85.7 % of piperacillin/tazobactam-nonsusceptible isolates, 80.6-82.1 % of cefepime-, ceftazidime- or meropenem-nonsusceptible isolates, and 75.9 % of multidrug-resistant (MDR) isolates of P. aeruginosa. For K. pneumoniae, 96.1 % of isolates (n=308) were susceptible to ceftolozane/tazobactam compared with meropenem (99.0 % susceptible), piperacillin/tazobactam (93.8 %), cefepime (85.7 %) and ceftazidime (85.4 %). The majority (88.3 %) of ESBL (extended-spectrum ß-lactamase) non-CRE (carbapenem-resistant Enterobacterales) phenotype isolates of K. pneumoniae were susceptible to ceftolozane/tazobactam, comparable to piperacillin/tazobactam (85.0 %) but lower than meropenem (100 %). For E. coli, 98.5 % of isolates (n=609) were susceptible to ceftolozane/tazobactam compared to meropenem (99.3 % susceptible), piperacillin/tazobactam (96.7 %), ceftazidime (82.3 %) and cefepime (76.5 %). The majority (96.7 %) of ESBL non-CRE phenotype isolates of E. coli were susceptible to ceftolozane/tazobactam, similar to both meropenem (100 %) and piperacillin/tazobactam (94.5 %).Conclusions. Overall, >96 % of clinical isolates of P. aeruginosa, K. pneumoniae and E. coli collected in Hong Kong in 2017-2019 were susceptible to ceftolozane/tazobactam, while the activity of several commonly prescribed ß-lactams was reduced, especially for P. aeruginosa. Continued surveillance of ceftolozane/tazobactam and other agents is warranted.


Subject(s)
Ceftazidime , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefepime , Ceftazidime/pharmacology , Cephalosporins/pharmacology , Escherichia coli , Hong Kong/epidemiology , Humans , Klebsiella pneumoniae , Meropenem/pharmacology , Microbial Sensitivity Tests , Piperacillin, Tazobactam Drug Combination , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa , Tazobactam/pharmacology
20.
Int J Antimicrob Agents ; 59(3): 106535, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35091052

ABSTRACT

This study aimed to determine the prevalence of extended-spectrum ß-lactamase (ESBL) non-carbapenem-resistant Enterobacterales (non-CRE) phenotype among clinical Escherichia coli and Klebsiella pneumoniae isolates collected in 2018-2019 for the SMART global surveillance programme and review trends in prevalence over 5 years (2015-2019). MICs were determined by CLSI reference broth microdilution. ESBL non-CRE phenotypes were defined as non-susceptible to ceftriaxone (MIC ≥ 2 µg/mL) and susceptible to ertapenem (MIC ≤ 0.5 µg/mL). In 2018-2019, ESBL non-CRE phenotypes among E. coli were more common in respiratory tract infection isolates than other infection sources across all global regions; for K. pneumoniae there was wide variation by geographic region in the specimen source most frequently associated with this phenotype. In most regions, ESBL non-CRE phenotype isolates were found more frequently in samples from ICU patients than non-ICU patients and from patients with hospital length of stay at time of specimen collection ≥48 h versus <48 h. ESBL non-CRE phenotypes exceeded 50% of isolates for E. coli from India, Thailand, Vietnam, China, Russia, Mexico, Kenya and Kuwait and for K. pneumoniae from Lithuania and Kuwait. ESBL non-CRE phenotype E. coli increased significantly (P < 0.05) in Asia (excluding China), Australia/New Zealand and Latin America from 2015-2019, while ESBL non-CRE phenotype K. pneumoniae increased significantly in Latin America, USA and Canada. There was marked variability in ESBL rates across countries, over time, and by sample source and ward type. Trending data from 2015-2019 showed ESBL rates are increasing in many regions worldwide.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Prevalence , Thailand , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...