Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.492
Filter
1.
Environ Sci Technol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984754

ABSTRACT

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.

2.
Int J Cancer ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898626

ABSTRACT

Metastasis-directed therapy (MDT) for oligometastatic prostate cancer (PCa), including stereotactic body radiotherapy (SBRT), has shown promise but is still considered investigational. This is the 5-year analysis of the TRANSFORM trial, the largest prospective cohort of men with oligometastatic PCa treated with SBRT-based MDT. The primary endpoint was 5-year treatment escalation-free survival (TE-FS), defined as freedom from any new cancer therapy other than further SBRT. In total, 199 men received SBRT; 76.4% were hormone-naïve at baseline. The rate of 5-year TE-FS was 21.7% (95% confidence interval [CI]: 15.7%-28.7%) overall and 25.4% (95% CI: 18.1%-33.9%) in the hormone-naïve subgroup. The subgroups with International Society of Urological Pathology Grade Groups 4-5 disease (hazard ratio [HR] = 1.48, 95% CI: 1.05-2.01, p = .026), a higher baseline prostate-specific antigen (PSA) (HR = 1.06, 95% CI: 1.03-1.09, p < .001) and those who received prior androgen deprivation therapy (ADT) (HR = 2.13, 95% CI: 1.40-3.26, p < .001), were at greater risk of treatment escalation. Outcomes for participants with four or five initial lesions were comparable to those with one to three lesions. At last follow-up, 18.9% (95% CI: 13.2%-25.7%) of participants were free from treatment escalation (median follow-up of 67.9 months) and two participants had an undetectable PSA level. No treatment-related grade three or higher adverse events were reported. The findings of this study demonstrate that SBRT-based MDT is an effective option for delaying systemic treatment escalation in the context of oligometastatic PCa. Future randomised trials comparing SBRT-based MDT to standard-of-care ADT-based approaches are required to evaluate the impact of delaying ADT on survival.

3.
Article in English | MEDLINE | ID: mdl-38788347

ABSTRACT

BACKGROUND: Linoleic acid (LNA), an essential polyunsaturated fatty acid (PUFA), plays a crucial role in cellular functions. However, excessive intake of LNA, characteristic of Western diets, can have detrimental effects on cells and organs. Human observational studies have shown an inverse relationship between plasma LNA concentrations and bone mineral density. The mechanism by which LNA impairs the skeleton is unclear, and there is a paucity of research on the effects of LNA on bone-forming osteoblasts. METHODS: The effect of LNA on osteoblast differentiation, cellular bioenergetics, and production of oxidized PUFA metabolites in vitro, was studied using primary mouse bone marrow stromal cells (BMSC) and MC3T3-E1 osteoblast precursors. RESULTS: LNA treatment decreased alkaline phosphatase activity, an early marker of osteoblast differentiation, but had no effect on committed osteoblasts or on mineralization by differentiated osteoblasts. LNA suppressed osteoblast commitment by blunting the expression of Runx2 and Osterix, key transcription factors involved in osteoblast differentiation, and other key osteoblast-related factors involved in bone formation. LNA treatment was associated with increased production of oxidized LNA- and arachidonic acid-derived metabolites and blunted oxidative phosphorylation, resulting in decreased ATP production. CONCLUSION: Our results show that LNA inhibited early differentiation of osteoblasts and this inhibitory effect was associated with increased production of oxidized PUFA metabolites that likely impaired energy production via oxidative phosphorylation.


Subject(s)
Cell Differentiation , Linoleic Acid , Osteoblasts , Oxidative Phosphorylation , Animals , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/drug effects , Mice , Oxidative Phosphorylation/drug effects , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Alkaline Phosphatase/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cells, Cultured
4.
Nat Chem Biol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744986

ABSTRACT

G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

5.
Int J Cancer ; 155(3): 508-518, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38651675

ABSTRACT

The etiology of lung cancer in never-smokers remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Here, we aimed to enhance our understanding of lung cancer pathogenesis among never-smokers using untargeted metabolomics. This nested case-control study included 395 never-smoking women who developed lung cancer and 395 matched never-smoking cancer-free women from the prospective Shanghai Women's Health Study with 15,353 metabolic features quantified in pre-diagnostic plasma using liquid chromatography high-resolution mass spectrometry. Recognizing that metabolites often correlate and seldom act independently in biological processes, we utilized a weighted correlation network analysis to agnostically construct 28 network modules of correlated metabolites. Using conditional logistic regression models, we assessed the associations for both metabolic network modules and individual metabolic features with lung cancer, accounting for multiple testing using a false discovery rate (FDR) < 0.20. We identified a network module of 121 features inversely associated with all lung cancer (p = .001, FDR = 0.028) and lung adenocarcinoma (p = .002, FDR = 0.056), where lyso-glycerophospholipids played a key role driving these associations. Another module of 440 features was inversely associated with lung adenocarcinoma (p = .014, FDR = 0.196). Individual metabolites within these network modules were enriched in biological pathways linked to oxidative stress, and energy metabolism. These pathways have been implicated in previous metabolomics studies involving populations exposed to known lung cancer risk factors such as traffic-related air pollution and polycyclic aromatic hydrocarbons. Our results suggest that untargeted plasma metabolomics could provide novel insights into the etiology and risk factors of lung cancer among never-smokers.


Subject(s)
Lung Neoplasms , Metabolomics , Humans , Female , Lung Neoplasms/blood , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Case-Control Studies , Middle Aged , Metabolomics/methods , China/epidemiology , Prospective Studies , Aged , Metabolic Networks and Pathways , Non-Smokers/statistics & numerical data , Risk Factors , Women's Health , Biomarkers, Tumor/blood , Smoking/adverse effects , Smoking/blood
6.
Brain Impair ; 252024 Feb.
Article in English | MEDLINE | ID: mdl-38566288

ABSTRACT

Background Stroke survivors' self-ratings of functional abilities are often inconsistent with ratings assigned by others (e.g. clinicians), a phenomenon referred to as 'impaired self-awareness' (ISA). There is limited knowledge of the biopsychosocial contributors and consequences of post-stroke ISA measured across the rehabilitation journey. This multi-site cohort study explored biopsychosocial correlates of ISA during subacute rehabilitation (inpatient) and at 4 months post-discharge (community-dwelling). Methods Forty-five subacute stroke survivors participated (Age M (s.d.) = 71.5 (15.6), 56% female), and 38 were successfully followed-up. Self-assessments were compared to those of an independent rater (occupational therapist, close other) to calculate ISA at both time points. Survivors and raters completed additional cognitive, psychological and functional measures. Results Multivariate regression (multiple outcomes) identified associations between ISA during inpatient admission and poorer outcomes at follow-up, including poorer functional cognition, participation restriction, caregiver burden, and close other depression and anxiety. Regression models applied cross-sectionally, including one intended for correlated predictors, indicated associations between ISA during inpatient admission and younger age, male sex, poorer functional cognition, poorer rehabilitation engagement and less frequent use of non-productive coping (adjusted R 2 = 0.60). ISA at community follow-up was associated with poorer functional cognition and close other anxiety (adjusted R 2 = 0.66). Conclusions Associations between ISA and poorer outcomes across the rehabilitation journey highlight the clinical importance of ISA and the value of assessment and management approaches that consider the potential influence of numerous biological and psychosocial factors on ISA. Future studies should use larger sample sizes to confirm these results and determine the causal mechanisms of these relationships.


Subject(s)
Aftercare , Stroke , Humans , Male , Female , Cohort Studies , Patient Discharge , Stroke/psychology , Survivors/psychology
7.
Free Radic Biol Med ; 217: 179-189, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38490457

ABSTRACT

Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.


Subject(s)
Oxidants , Proteome , Humans , Oxidation-Reduction , Sulfhydryl Compounds
8.
APL Bioeng ; 8(1): 016117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476403

ABSTRACT

Terahertz (THz) imaging has long held promise for skin cancer detection but has been hampered by the lack of practical technological implementation. In this article, we introduce a technique for discriminating several skin pathologies using a coherent THz confocal system based on a THz quantum cascade laser. High resolution in vivo THz images (with diffraction limited to the order of 100 µm) of several different lesion types were acquired and compared against one another using the amplitude and phase values. Our system successfully separated pathologies using a combination of phase and amplitude information and their respective surface textures. The large scan field (50 × 40 mm) of the system allows macroscopic visualization of several skin lesions in a single frame. Utilizing THz imaging for dermatological assessment of skin lesions offers substantial additional diagnostic value for clinicians. THz images contain information complementary to the information contained in the conventional digital images.

9.
Toxicol Sci ; 199(2): 332-348, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38544285

ABSTRACT

Exposure to wildfire smoke is associated with both acute and chronic cardiopulmonary illnesses, which are of special concern for wildland firefighters who experience repeated exposure to wood smoke. It is necessary to better understand the underlying pathophysiology by which wood smoke exposure increases pulmonary disease burdens in this population. We hypothesize that wood smoke exposure produces pulmonary dysfunction, lung inflammation, and gene expression profiles associated with future pulmonary complications. Male Long-Evans rats were intermittently exposed to smoldering eucalyptus wood smoke at 2 concentrations, low (11.0 ± 1.89 mg/m3) and high (23.7 ± 0.077 mg/m3), over a 2-week period. Whole-body plethysmography was measured intermittently throughout. Lung tissue and lavage fluid were collected 24 h after the final exposure for transcriptomics and metabolomics. Increasing smoke exposure upregulated neutrophils and select cytokines in the bronchoalveolar lavage fluid. In total, 3446 genes were differentially expressed in the lungs of rats in the high smoke exposure and only 1 gene in the low smoke exposure (Cd151). Genes altered in the high smoke group reflected changes to the Eukaryotic Initiation Factor 2 stress and oxidative stress responses, which mirrored metabolomics analyses. xMWAS-integrated analysis revealed that smoke exposure significantly altered pathways associated with oxidative stress, lung morphogenesis, and tumor proliferation pathways. These results indicate that intermittent, 2-week exposure to eucalyptus wood smoke leads to transcriptomic and metabolic changes in the lung that may predict future lung disease development. Collectively, these findings provide insight into cellular signaling pathways that may contribute to the chronic pulmonary conditions observed in wildland firefighters.


Subject(s)
Eucalyptus , Lung , Rats, Long-Evans , Smoke , Animals , Male , Smoke/adverse effects , Lung/drug effects , Lung/metabolism , Wood , Rats , Bronchoalveolar Lavage Fluid/chemistry , Metabolome/drug effects , Transcriptome/drug effects , Inhalation Exposure/adverse effects , Cytokines/metabolism , Cytokines/genetics
10.
Toxicology ; 504: 153772, 2024 May.
Article in English | MEDLINE | ID: mdl-38479551

ABSTRACT

Vanadium pentoxide (V+5) is a hazardous material that has drawn considerable attention due to its wide use in industrial sectors and increased release into environment from human activities. It poses potential adverse effects on animals and human health, with pronounced impact on lung physiology and functions. In this study, we investigated the metabolic response of human bronchial epithelial BEAS-2B cells to low-level V+5 exposure (0.01, 0.1, and 1 ppm) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Exposure to V+5 caused extensive changes to cellular metabolism in BEAS-2B cells, including TCA cycle, glycolysis, fatty acids, amino acids, amino sugars, nucleotide sugar, sialic acid, vitamin D3, and drug metabolism, without causing cell death. Altered mitochondrial structure and function were observed with as low as 0.01 ppm (0.2 µM) V+5 exposure. In addition, decreased level of E-cadherin, the prototypical epithelial marker of epithelial-mesenchymal transition (EMT), was observed following V+5 treatment, supporting potential toxicity of V+5 at low levels. Taken together, the present study shows that V+5 has adverse effects on mitochondria and the metabolome which may result in EMT activation in the absence of cell death. Furthermore, results suggest that high-resolution metabolomics could serve as a powerful tool to investigate metal toxicity at levels which do not cause cell death.


Subject(s)
Bronchi , Epithelial Cells , Mitochondria , Vanadium Compounds , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line , Vanadium Compounds/toxicity , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Bronchi/drug effects , Bronchi/metabolism , Bronchi/cytology , Epithelial-Mesenchymal Transition/drug effects , Cell Survival/drug effects , Cadherins/metabolism , Dose-Response Relationship, Drug
11.
Environ Int ; 186: 108601, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537583

ABSTRACT

BACKGROUND: Strong epidemiological evidence shows positive associations between exposure to per- and polyfluoroalkyl substances (PFAS) and adverse cardiometabolic outcomes (e.g., diabetes, hypertension, and dyslipidemia). However, the underlying cardiometabolic-relevant biological activities of PFAS in humans remain largely unclear. AIM: We evaluated the associations of PFAS exposure with high-throughput proteomics in Hispanic youth. MATERIAL AND METHODS: We included 312 overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) between 2001 and 2012, along with 137 young adults from the Metabolic and Asthma Incidence Research (Meta-AIR) between 2014 and 2018. Plasma PFAS (i.e., PFOS, PFOA, PFHxS, PFHpS, PFNA) were quantified using liquid-chromatography high-resolution mass spectrometry. Plasma proteins (n = 334) were measured utilizing the proximity extension assay using an Olink Explore Cardiometabolic Panel I. We conducted linear regression with covariate adjustment to identify PFAS-associated proteins. Ingenuity Pathway Analysis, protein-protein interaction network analysis, and protein annotation were used to investigate alterations in biological functions and protein clusters. RESULTS: Results after adjusting for multiple comparisons showed 13 significant PFAS-associated proteins in SOLAR and six in Meta-AIR, sharing similar functions in inflammation, immunity, and oxidative stress. In SOLAR, PFNA demonstrated significant positive associations with the largest number of proteins, including ACP5, CLEC1A, HMOX1, LRP11, MCAM, SPARCL1, and SSC5D. After considering the mixture effect of PFAS, only SSC5D remained significant. In Meta-AIR, PFAS mixtures showed positive associations with GDF15 and IL6. Exploratory analysis showed similar findings. Specifically, pathway analysis in SOLAR showed PFOA- and PFNA-associated activation of immune-related pathways, and PFNA-associated activation of inflammatory response. In Meta-AIR, PFHxS-associated activation of dendric cell maturation was found. Moreover, PFAS was associated with common protein clusters of immunoregulatory interactions and JAK-STAT signaling in both cohorts. CONCLUSION: PFAS was associated with broad alterations of the proteomic profiles linked to pro-inflammation and immunoregulation. The biological functions of these proteins provide insight into potential molecular mechanisms of PFAS toxicity.


Subject(s)
Environmental Exposure , Environmental Pollutants , Fluorocarbons , Hispanic or Latino , Proteomics , Humans , Adolescent , Fluorocarbons/blood , Female , Male , Environmental Pollutants/blood , Young Adult
12.
Environ Int ; 185: 108454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316574

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are pollutants linked to adverse health effects. Diet is an important source of PFAS exposure, yet it is unknown how diet impacts longitudinal PFAS levels. OBJECTIVE: To determine if dietary intake and food sources were associated with changes in blood PFAS concentrations among Hispanic young adults at risk of metabolic diseases. METHODS: Predominantly Hispanic young adults from the Children's Health Study who underwent two visits (CHS; n = 123) and young adults from NHANES 2013-2018 who underwent one visit (n = 604) were included. Dietary data at baseline was collected using two 24-hour dietary recalls to measure individual foods and where foods were prepared/consumed (home/restaurant/fast-food). PFAS were measured in blood at both visits in CHS and cross-sectionally in NHANES. In CHS, multiple linear regression assessed associations of baseline diet with longitudinal PFAS; in NHANES, linear regression was used. RESULTS: In CHS, all PFAS except PFDA decreased across visits (all p < 0.05). In CHS, A 1-serving higher tea intake was associated with 24.8 %, 16.17 %, and 12.6 % higher PFHxS, PFHpS, and PFNA at follow-up, respectively (all p < 0.05). A 1-serving higher pork intake was associated with 13.4 % higher PFOA at follow-up (p < 0.05). Associations were similar in NHANES, including unsweetened tea, hot dogs, and processed meats. For food sources, in CHS each 200-gram increase in home-prepared food was associated with 0.90 % and 1.6 % lower PFOS at baseline and follow-up, respectively, and in NHANES was associated with 0.9 % lower PFDA (all p < 0.05). CONCLUSION: Results suggest that beverage consumption habits and food preparation are associated with differences in PFAS levels in young adults. This highlights the importance of diet in determining PFAS exposure and the necessity of public monitoring of foods and beverages for PFAS contamination.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Humans , Young Adult , Eating , Hispanic or Latino , Nutrition Surveys , Tea
13.
Front Cardiovasc Med ; 11: 1358472, 2024.
Article in English | MEDLINE | ID: mdl-38410244

ABSTRACT

Introduction: Investigating coronary microvascular perfusion responses after myocardial infarction (MI) would aid in the development of flow preserving therapies. Laser speckle contrast imaging (LSCI) is a powerful tool used for real-time, non-contact, full-field imaging of blood flow in various tissues/organs. However, its use in the beating heart has been limited due to motion artifacts. Methods: In this paper, we report the novel use of LSCI, combined with custom speckle analysis software (SpAn), to visualise and quantitate changes in ventricular perfusion in adult and aged mice undergoing ischaemia-reperfusion (IR) injury. The therapeutic benefit of inhibiting the actions of the pro-inflammatory cytokine interleukin-36 (IL-36) was also investigated using an IL-36 receptor antagonist (IL-36Ra). Results: Imaging from uncovered and covered regions of the left ventricle demonstrated that whilst part of the LSCI flux signal was derived from beating motion, a significant contributor to the flux signal came from ventricular microcirculatory blood flow. We show that a biphasic flux profile corresponding to diastolic and systolic phases of the cardiac cycle can be detected without mathematically processing the total flux data to denoise motion artifacts. Furthermore, perfusion responses to ischaemia and postischaemia were strong, reproducible and could easily be detected without the need to subtract motion-related flux signals. LSCI also identified significantly poorer ventricular perfusion in injured aged mice following IR injury which markedly improved with IL-36Ra. Discussion: We therefore propose that LSCI of the heart is possible despite motion artifacts and may facilitate future investigations into the role of the coronary microcirculation in cardiovascular diseases and development of novel therapies.

14.
Ann Thorac Surg ; 117(6): 1121-1127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38307482

ABSTRACT

BACKGROUND: Inaccuracy of clinical staging renders management of clinical T2 N0 M0 (cT2 N0 M0) esophageal cancer difficult. When an underlying advanced-stage disease is understaged to cT2 N0 M0, patients miss the opportunity to gain the potential benefits of neoadjuvant therapy. This study aimed to identify preoperative factors that predict underlying advanced-stage esophageal cancer. METHODS: From 2000 to 2020, 1579 patients with esophageal cancer underwent esophagectomy. Sixty patients who underwent upfront surgery for cT2 N0 M0 esophageal cancer were included in this study. The median age was 62.5 years, and 78% (n = 47) of these patients were male. Radiologic, clinical, and endoscopic factors were evaluated as preoperative markers. The Fisher exact and the Wilcoxon rank sum tests were used for categoric and continuous variables, respectively. Random forest classification was used to identify preoperative factors for predicting upstaging and downstaging. RESULTS: Of the 60 patients, 8 (13%) were found to have pathologic T2 N0 M0 esophageal cancer. Sixteen (27%) patients had cancer that was pathologically downstaged, and 36 (60%) had upstaged disease. Seven (19%) patients had upstaged cancer on the basis of the pathologic T stage, 14 (39%) had upstaging on the basis of the pathologic N stage, and 15 (42%) had upstaging on the basis of both T and N stages. Dysphagia (P = .003) and tumor maximum standardized uptake value (P = .048) were predictors of upstaging, with a combined predictive value of up to 75%. CONCLUSIONS: The presence of dysphagia and of high maximum standardized uptake value (≥5) of the tumor is predictive of more advanced underlying disease for patients with cT2 N0 M0 esophageal cancer, and these patients should be considered for neoadjuvant therapy.


Subject(s)
Esophageal Neoplasms , Esophagectomy , Neoplasm Staging , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Male , Female , Middle Aged , Aged , Retrospective Studies , Predictive Value of Tests
15.
Toxicol Appl Pharmacol ; 483: 116806, 2024 02.
Article in English | MEDLINE | ID: mdl-38195004

ABSTRACT

Cadmium (Cd) is a naturally occurring, toxic environmental metal found in foods. Humans do not have an efficient mechanism for Cd elimination; thus, Cd burden in humans increases with age. Cell and mouse studies show that Cd burden from low environmental levels of exposure impacts lung cell metabolism, proliferation signaling and cell growth as part of disease-promoting profibrotic responses in the lungs. Prior integrative analysis of metabolomics and transcriptomics identified the zDHHC11 transcript as a central functional hub in response to Cd dose. zDHHC11 encodes a protein S-palmitoyltransferase, but no evidence is available for effects of Cd on protein S-palmitoylation. In the present research, we studied palmitoylation changes in response to Cd and found increased protein S-palmitoylation in human lung fibroblasts that was inhibited by 2-bromopalmitate (2-BP), an irreversible palmitoyltransferase inhibitor. Mass spectrometry-based proteomics showed palmitoylation of proteins involved in divalent metal transport and in fibrotic signaling. Mechanistic studies showed that 2-BP inhibited palmitoylation of divalent metal ion transporter ZIP14 and also inhibited cellular Cd uptake. Transcription analyses showed that Cd stimulated transforming growth factor (TGF)-ß1 and ß3 expression within 8 h and lung fibrotic markers α-smooth muscle actin, matrix metalloproteinase-2, and collagen 1α1 gene expression and that these effects were blocked by 2-BP. Because 2-BP also blocked palmitoylation of proteins controlled by TGFß1, these results show that palmitoylation impacts Cd-dependent fibrotic signaling both by enhancing cellular Cd accumulation and by supporting post-translational processing of TGFß1-dependent proteins.


Subject(s)
Cadmium , Matrix Metalloproteinase 2 , Humans , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , Matrix Metalloproteinase 2/metabolism , Lipoylation , Lung , Signal Transduction , Fibrosis , Fibroblasts , Transforming Growth Factor beta1/metabolism
16.
J Chest Surg ; 57(2): 213-216, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38221730

ABSTRACT

Bilateral transverse thoracosternotomy, or "clamshell" thoracotomy, can be complicated by dehiscence. A 65-year-old male underwent lung transplantation via clamshell thoracotomy, with subsequent sternal dehiscence on postoperative day 11. Upon repair, the previous sternal wires had pulled through, so a Sternal Talon connected to a Recon Talon was utilized to re-approximate the inferior sternum. On follow-up at 3 months, the patient recovered well. Use of the Sternal Talon provides an effective technique for repairing transverse sternal dehiscence.

17.
Sci Rep ; 14(1): 1794, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245568

ABSTRACT

Plasma metabolomics profiling is an emerging methodology to identify metabolic pathways underlying cardiovascular health (CVH). The objective of this study was to define metabolomic profiles underlying CVH in a cohort of Black adults, a population that is understudied but suffers from disparate levels of CVD risk factors. The Morehouse-Emory Cardiovascular (MECA) Center for Health Equity study cohort consisted of 375 Black adults (age 53 ± 10, 39% male) without known CVD. CVH was determined by the AHA Life's Simple 7 (LS7) score, calculated from measured blood pressure, body mass index (BMI), fasting blood glucose and total cholesterol, and self-reported physical activity, diet, and smoking. Plasma metabolites were assessed using untargeted high-resolution metabolomics profiling. A metabolome wide association study (MWAS) identified metabolites associated with LS7 score after adjusting for age and sex. Using Mummichog software, metabolic pathways that were significantly enriched in metabolites associated with LS7 score were identified. Metabolites representative of these pathways were compared across clinical domains of LS7 score and then developed into a metabolomics risk score for prediction of CVH. We identified novel metabolomic signatures and pathways associated with CVH in a cohort of Black adults without known CVD. Representative and highly prevalent metabolites from these pathways included glutamine, glutamate, urate, tyrosine and alanine, the concentrations of which varied with BMI, fasting glucose, and blood pressure levels. When assessed in conjunction, these metabolites were independent predictors of CVH. One SD increase in the novel metabolomics risk score was associated with a 0.88 higher LS7 score, which translates to a 10.4% lower incident CVD risk. We identified novel metabolomic signatures of ideal CVH in a cohort of Black Americans, showing that a core group of metabolites central to nitrogen balance, bioenergetics, gluconeogenesis, and nucleotide synthesis were associated with CVH in this population.


Subject(s)
Cardiovascular Diseases , Adult , Humans , Male , United States , Middle Aged , Female , Cardiovascular Diseases/epidemiology , Risk Factors , Blood Pressure/physiology , Smoking , Diet , Health Status
18.
J Thorac Cardiovasc Surg ; 167(4): 1490-1497.e17, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37625617

ABSTRACT

OBJECTIVE: Currently, there is no validated patient-reported outcome measure (PROM) applicable to all esophageal diseases. Our objective was to create a psychometrically robust, validated universal esophageal PROM that can also objectively assess patients' quality of life (QoL). METHODS: The pilot PROM constructed based on expert opinions, literature review, and previous unpublished institutional research had 27 items covering 8 domains. It was completed by 30 patients in the outpatient clinic followed by a structured debriefing interview, which allowed for refining the PROM. The final PROM: Cleveland Clinic Esophageal Questionnaire (CEQ) included 34 items across 6 domains (Dysphagia, Eating, Pain, Reflux & Regurgitation, Dyspepsia, Dumping), each accompanied by a corresponding QoL component. Further psychometric assessment of the PROM was conducted by evaluating (1) acceptability, (2) construct validity, (3) reliability, and (4) responsiveness. RESULTS: Five hundred forty-six unique patients (median 63.7 years [54.3-71.7], 53% male [287], 86% White) completed CEQ at >90% completion within 5 minutes. Construct validity was demonstrated by differentiating scores across esophageal cancer (n = 146), achalasia (n = 170), hiatal hernia (n = 160), and other diagnoses (n = 70). Internal reliability (Cronbach alpha 0.83-0.89), and test-retest reliability (intraclass correlation coefficients 0.63-0.85) were strong. Responsiveness was demonstrated through CEQ domains improving for 53 patients who underwent surgery for achalasia or hiatal hernia (Cohen d 0.86-2.59). CONCLUSIONS: We have constructed a psychometrically robust, universal esophageal PROM that allows concise, consistent, objective quantification of symptoms and their effect on the patient. The CEQ is valuable in prognostication and tracking of longitudinal outcomes in both benign and malignant esophageal diseases.


Subject(s)
Esophageal Achalasia , Esophageal Diseases , Hernia, Hiatal , Humans , Male , Female , Quality of Life , Reproducibility of Results , Surveys and Questionnaires , Esophageal Diseases/diagnosis , Ambulatory Care Facilities , Patient Reported Outcome Measures
19.
J Nutr ; 154(2): 670-679, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092151

ABSTRACT

BACKGROUND: Folic acid (FA) is the oxidized form of folate found in supplements and FA-fortified foods. Most FA is reduced by dihydrofolate reductase to 5-methyltetrahydrofolate (5mTHF); the latter is the form of folate naturally found in foods. Ingestion of FA increases the plasma levels of both 5mTHF and unmetabolized FA (UMFA). Limited information is available on the downstream metabolic effects of FA supplementation, including potential effects associated with UMFA. OBJECTIVE: We aimed to assess the metabolic effects of FA-supplementation, and the associations of plasma 5mTHF and UMFA with the metabolome in FA-naïve Bangladeshi adults. METHODS: Sixty participants were selected from the Folic Acid and Creatine Trial; half received 800 µg FA/day for 12 weeks and half placebo. Plasma metabolome profiles were measured by high-resolution mass spectrometry, including 170 identified metabolites and 26,541 metabolic features. Penalized regression methods were used to assess the associations of targeted metabolites with FA-supplementation, plasma 5mTHF, and plasma UMFA. Pathway analyses were conducted using Mummichog. RESULTS: In penalized models of identified metabolites, FA-supplementation was associated with higher choline. Changes in 5mTHF concentrations were positively associated with metabolites involved in amino acid metabolism (5-hydroxyindoleacetic acid, acetylmethionine, creatinine, guanidinoacetate, hydroxyproline/n-acetylalanine) and 2 fatty acids (docosahexaenoic acid and linoleic acid). Changes in 5mTHF concentrations were negatively associated with acetylglutamate, acetyllysine, carnitine, propionyl carnitine, cinnamic acid, homogentisate, arachidonic acid, and nicotine. UMFA concentrations were associated with lower levels of arachidonic acid. Together, metabolites selected across all models were related to lipids, aromatic amino acid metabolism, and the urea cycle. Analyses of nontargeted metabolic features identified additional pathways associated with FA supplementation. CONCLUSION: In addition to the recapitulation of several expected metabolic changes associated with 5mTHF, we observed additional metabolites/pathways associated with FA-supplementation and UMFA. Further studies are needed to confirm these associations and assess their potential implications for human health. TRIAL REGISTRATION NUMBER: This trial was registered at https://clinicaltrials.gov as NCT01050556.


Subject(s)
Dietary Supplements , Folic Acid , Adult , Humans , Food, Fortified , Choline , Arachidonic Acids
20.
Tuberculosis (Edinb) ; 144: 102462, 2024 01.
Article in English | MEDLINE | ID: mdl-38070353

ABSTRACT

Much of the high mortality in tuberculosis meningitis (TBM) is attributable to excessive inflammation, making it imperative to identify targets for host-directed therapies that reduce pathologic inflammation and mortality. In this study, we investigate how cytokines and metabolites in the cerebral spinal fluid (CSF) associate with TBM at diagnosis and during TBM treatment. At diagnosis, TBM patients (n = 17) demonstrate significant increases of cytokines and chemokines that promote inflammation and cell migration including IL-17A, IL-2, TNFα, IFNγ, and IL-1ß versus asymptomatic controls without known central nervous system pathology (n = 20). Inflammatory immune signaling had a strong positive correlation with immunomodulatory metabolites including kynurenine, lactic acid, and carnitine and strong negative correlations with tryptophan and itaconate. Inflammatory immunometabolic networks were only partially reversed with two months of effective TBM treatment and remained significantly different compared to CSF from controls. Together, these data highlight a critical role for host metabolism in regulating the inflammatory response to TBM and indicate the timeline for restoration of immune homeostasis in the CSF is prolonged.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , Tuberculosis, Meningeal/cerebrospinal fluid , Inflammation , Cytokines , Chemokines
SELECTION OF CITATIONS
SEARCH DETAIL
...