Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15484-15493, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752286

ABSTRACT

Pentagraphyne (PG-yne), a recently predicted two-dimensional (2D) carbon allotrope with appealing properties, has opened up possibilities for a wide range of applications. In this study, we investigate the structural, electronic, optical, and electrical transport properties of a novel one-dimensional (1D) system called pentagraphyne nanotubes (PG-yneNTs), formed by rolling a PG-yne sheet, using density functional theory (DFT) calculations. We design PG-yneNTs with diameters ranging from 6.94 Å to 13.62 Å and employ state-of-the-art theoretical calculations to confirm their energetic, dynamic, and thermodynamic stability. Our electronic band structure calculations reveal that all these nanotubes are wide indirect band gap semiconductors. Remarkably, PG-yneNTs exhibit superior optical properties, including high absorption coefficients and absorption spectra covering the visible regime of the electromagnetic spectrum, making them potential candidates for visible-light-driven photocatalysis and solar cells. Interestingly, both the electronic and optical band gaps increase with the diameter of the nanotubes. Additionally, the observation of negative differential resistance (NDR) phenomena in (4, 0) PG-yneNT suggests their potential applications in NDR devices such as fast switches, frequency multipliers, and memory devices.

2.
J Chem Inf Model ; 64(3): 799-811, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38237025

ABSTRACT

The pursuit of designing smart and functional materials is of paramount importance across various domains, such as material science, engineering, chemical technology, electronics, biomedicine, energy, and numerous others. Consequently, researchers are actively involved in the development of innovative models and strategies for material design. Recent advancements in analytical tools, experimentation, and computer technology additionally enhance the material design possibilities. Notably, data-driven techniques like artificial intelligence and machine learning have achieved substantial progress in exploring various applications within material science. One such approach, ChatGPT, a large language model, holds transformative potential for addressing complex queries. In this article, we explore ChatGPT's understanding of material science by assigning some simple tasks across various subareas of computational material science. The findings indicate that while ChatGPT may make some minor errors in accomplishing general tasks, it demonstrates the capability to learn and adapt through human interactions. However, issues like output consistency, probable hidden errors, and ethical consequences should be addressed.


Subject(s)
Artificial Intelligence , Electronics , Humans , Language , Machine Learning , Materials Science
3.
Phys Chem Chem Phys ; 25(34): 23033-23046, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37599612

ABSTRACT

The development of a low-cost, environment-friendly and suitable semiconductor-based heterogeneous photocatalyst poses a great challenge towards extremely competent and substantial hydrogen evolution. A series of environment-friendly and proficient S-scheme Ni-doped CuWO4 nanocrystals supported on g-C3N4 nanocomposites (Ni-CuWO4/g-C3N4) were constructed to ameliorate the photocatalytic efficacy of pure g-C3N4 and Ni-CuWO4 and their activity in H2 generation through photocatalytic water splitting was evaluated. The Ni-CuWO4 nanoparticles were synthesized through doping of Ni2+ on wolframite CuWO4 crystals via the chemical precipitation method. An elevated hydrogen generation rate of 1980 µmol h-1 g-1 was accomplished over the 0.2Ni-CuWO4/g-C3N4 (0.2NCWCN) nanocomposite with an apparent quantum yield (AQY) of 6.49% upon visible light illumination (λ ≥ 420 nm), which is evidently 7.1 and 17.2 fold higher than those produced from pristine g-C3N4 and Ni-CuWO4. The substantial enhancement in the photocatalytic behaviour is primarily because of the large surface area, limited band gap energy of the semiconductor composite and magnified light harvesting capability towards visible light through the inclusion of g-C3N4, thus diminishing the reassembly rate of photoinduced excitons. Further, density functional theory (DFT) calculations were performed to investigate the structural, electronic and optical properties of the composite. Theoretical results confirmed that the Ni-CuWO4/g-C3N4 composite is a potential candidate for visible-light-driven photocatalysts and corroborated with the experimental findings. This research provides a meaningful and appealing perspective on developing cost-effective and very proficient two-dimensional (2D) g-C3N4-based materials for photocatalytic H2 production to accelerate the separation and transmission process of radiative charge carriers.

4.
Article in English | MEDLINE | ID: mdl-35548976

ABSTRACT

Volatile organic sulfur compounds (VOSCs) serve not only as biomarkers for dental diseases such as halitosis but also as a tracer for monitoring air quality. Room-temperature selective detection and superior sensitivity against VOSCs at a sub-ppm level has remained a challenging task. Here, we propose a heterostructure-based design using a MoSe2/SnO2 composite for achieving sensitive and selective detection of ethyl mercaptan at room temperature. The composite was synthesized via a facile two-step method. A composite-based device has shown detection down to 1 ppm of ethyl mercaptan over a wider range of relative humidity (40-90%). Notably, the composite has shown adsorption selectivity toward ethyl mercaptan compared to hydrogen sulfide and other reducing or oxidizing analytes. Moreover, a density functional theory (DFT) study has been performed to understand the adsorption selectivity, charge transfer, and modification in the electronic properties after molecule adsorption on the host surface. Simulations predicted the lowest negative adsorption energy for ethyl mercaptan, implying the chemisorption (-142.029 kJ mol-1) process of adsorption. The device thus-obtained has also shown a stable response even at an extreme relative humidity level of 90%. The obtained results and superior signal-to-noise ratio indicate that a MoSe2/SnO2-based sensor may be a promising candidate for highly selective and sensitive detection of ethyl mercaptan even below 1 ppm.

5.
J Hazard Mater ; 435: 128821, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35468389

ABSTRACT

Herein, we report ammonia sensing in a natural highly humid environment using MoSe2/multi-walled carbon nanotube (MWCNT) composite as sensing platform. The composite synthesis involved two steps, in the first step, MWCNTs were treated in an acidic medium to obtain -COOH group functionalized MWCNTs. In the second step, functionalized MWCNTs were probe sonicated with MoSe2 to obtain MoSe2/MWCNT composite. Proposed device exhibited superior sensing properties at a temperature down to 16∘ C and relative humidity of 80%. Under these extreme natural environmental conditions, the device exhibited a relative response of 21% for 0.5 ppm of ammonia and superior noise free signal further suggests their use even below this concentration. Composite based device has also displayed better adsorption selectivity towards NH3 as compared with other reducing and oxidizing gas molecules. Density functional theory simulations were further employed to understand the underlying adsorption process and selectivity behavior of the composite. Simulations predicted lowest negative adsorption energy for ammonia, implying physisorption (-0.387 eV) type exothermic adsorption process. Present results indicate that a composite with the rightly engineered MoSe2 and MWCNTs weight ratio may serve as a potential candidate for ammonia sensing in a highly humid environment.


Subject(s)
Nanotubes, Carbon , Adsorption , Ammonia , Temperature
6.
J Mol Graph Model ; 112: 108117, 2022 05.
Article in English | MEDLINE | ID: mdl-34995892

ABSTRACT

Using density functional theory (DFT) approach, we have investigated the effect of strain on the electronic properties of two-dimensional (2D) boron phosphide (BP) sheet. With the increase in uniaxial and biaxial tensile strain band gap increases while band gap decreases and becomes metallic with the increase in uniaxial and biaxial compressive strain. Electrical and thermal transport properties of zigzag and armchair 2D BP sheets have been explored using nonequilibrium Green's function formalism (NEGF) and the changes in the nature of I-V characteristics with the application of strain have been reported. The magnitude of the current decreases with the increase of strain value along transport direction for both zigzag and armchair 2D BP sheets. For unstrained systems, the magnitude of current is nearly same for both zigzag and armchair 2D BP sheets. However, for a particular strain value, magnitude of current is more for zigzag sheet compared to armchair sheet. Though both zigzag and armchair 2D BP sheets have reasonably high ZTe which confirms its potentiality for designing efficient thermoelectric material but zigzag sheet is more preferable for thermoelectric application compared to armchair sheet due to its higher ZTe in comparison to armchair sheet.

7.
ACS Omega ; 6(31): 20149-20157, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34395966

ABSTRACT

In this paper, we have investigated the thermoelectric properties of BN-doped graphynes and compared them with respect to their pristine counterpart using first-principles calculations. The effect of temperature on the thermoelectric properties has also been explored. Pristine γ-graphyne is an intrinsic band gap semiconductor and the band gap significantly increases due to the incorporation of boron and nitrogen atoms into the system, which simultaneously results in high electrical conductivity, a large Seebeck coefficient, and low thermal conductivity. The Seebeck coefficient for all these systems is significantly higher than that of conventional thermoelectric materials, suggesting their potential in thermoelectric applications. Among all the considered systems, the "graphyne-like BN sheet" has the highest electrical conductance and lowest thermal conductance, ensuring its superiority in thermoelectric properties over the other studied systems. We find that a maximum full ZT of ∼6 at room temperature is accessible in the "graphyne-like BN sheet".

8.
Phys Chem Chem Phys ; 23(30): 16268-16276, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34309612

ABSTRACT

A 'twin-graphene' bilayer-based nanoscale capacitor and nanoscale dielectric capacitor are designed using a density functional theory approach including van der Waals dispersion correction. A strong effect on electronic properties is observed for different stacking modes. The AB stacking mode is the most stable one among the considered stacking modes with a band gap of 0.553 eV. Our predicted energy and charge-storage capacities are higher than those of other nanoscale capacitors designed using other two-dimensional carbon allotropes. We designed a nanoscale dielectric capacitor by placing a 'twin-graphene like BN sheet' (n = 1-3) sandwiched between 'twin-graphene' layers. The capacitance decreases significantly in the nanoscale dielectric capacitor model compared to the nanoscale capacitor model. However, the measured capacitance is higher than that of the previously studied nanoscale dielectric capacitor models. The significant capacitance of our proposed models ensures their promising applications for designing next-generation nanoscale capacitors.

9.
J Phys Chem A ; 124(7): 1312-1320, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31978308

ABSTRACT

Using density functional theory calculations, we have analyzed nonlinear optical properties of a series of T-graphene quantum dots differing in their shape and size. Electronic polarizability and first-order and second-order hyperpolarizability of these systems are investigated and shed light on their stability and electronic properties. Negative cohesive energy shows that they are energetically stable. The effect of size and incident frequency on their nonlinear responses are comprehensively discussed. Most of the systems exhibit a strong NLO response, and it is enhanced in the presence of an external field. All these systems show absorption maximum ranging from UV to visible window. Overall, this theoretical framework highlighted the nonlinear optical properties of T-graphene quantum dots that may provide valuable information in designing potential NLO materials.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117827, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31787535

ABSTRACT

Here, we present a density functional theory (DFT) study of hydrogen bonding and π-π stacking interactions between epinephrine and different aromatic nitro-compounds in gas phase as well as in methanol solvent. Detail investigations of hydrogen bonding and π-π interactions are performed and confirmed on the basis of theoretical IR spectra, natural bond orbital (NBO) analysis, non-covalent interaction (NCI), chemical reactivity descriptors and electronic spectra. Among different functionals used for the calculation, the results obtained from ωB97XD functional are found to be more suitable to describe the hydrogen bonding and π-π stacking phenomenon for our considered systems. Weakening of hydrogen bonding and π-π stacking interaction on solvent incorporation is observed. Electronic transition between different orbitals and transition probabilities of epinephrine and nitro-aromatic complexes are described using time dependent density functional theory (TD-DFT) method.


Subject(s)
Epinephrine/chemistry , Hydrogen Bonding , Nitro Compounds/chemistry , Spectrophotometry, Infrared/methods , Density Functional Theory , Gases , Methanol/chemistry , Models, Chemical , Models, Molecular , Picrates/chemistry , Protein Binding , Quantum Theory , Solvents , Spectroscopy, Fourier Transform Infrared
11.
J Mol Model ; 24(9): 249, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30132148

ABSTRACT

The way the bonding and reactivity of armchair carbon nanotubes depends on the curvature of the nanotube has been investigated using density functional theory. To understand the nature of the interaction between atoms in the nanotube, the Wiberg bond index, natural bond order analysis, and topological electron density analysis have been performed. All these tools confirm that the bonds in the hydrogen-capped carbon nanotubes considered here are primarily covalent. As the diameter of the nanotube decreases and its curvature increases, the covalency (bond order) decreases, a conclusion that is supported by the increase of the bond lengths and also the decrease of the electron density and the energy density along the bond paths as the curvature increases. To shed light on the orbital contribution in bond formation and the most effective interaction between donor bonding orbital and acceptor antibonding orbital, analysis of natural bond orbitals is carried out. We have observed that the higher the nanotube diameter is, the higher the energy gap.

12.
J Mol Model ; 24(8): 204, 2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30008037

ABSTRACT

Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X = B, Al; Y = N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities. Graphical abstract Possible applications of doped C24 fullerene.

13.
ISRN Pharm ; 2012: 364261, 2012.
Article in English | MEDLINE | ID: mdl-22988527

ABSTRACT

The aim of the present work was designed to develop a model-sustained release matrix tablet formulation for Metformin hydrochloride using wet granulation technique. In the present study the formulation design was employed to statistically optimize different parameters of Metformin hydrochloride tablets at different drug-to-polymer ratios employing polymers Hydroxypropyl methylcellulose of two grades K4M and K100M as two independent variables whereas the dependent variables studied were X(60), X(120), T(50), T(90), n, and b values obtained from dissolution kinetics data. The in vitro drug release studies were carried out at simulated intestinal fluids, and the release showed a non-Fickian anomalous transport mechanism. The drug release was found to reveal zero order kinetics. The granules and the tablets were tested for their normal physical, morphological, and analytical parameters and were found to be within the satisfactory levels. There were no significant drug-polymer interactions as revealed by infrared spectra. It has been found out that on an optimum increased Hydroxypropyl methylcellulose K100M concentration and decreased Hydroxypropyl methylcellulose K4M concentration the formulations were elegant in terms of their release profiles and were found to be statistically significant and generable.

14.
ISRN Pharm ; 2012: 230621, 2012.
Article in English | MEDLINE | ID: mdl-22900209

ABSTRACT

Purpose. The objective of the proposed work is to evaluate the efficacy of Pectins to qualify them as polymers for designing an oral microsphere for the delivery of selected oral antidiabetic drug-like metformin hydrochloride. Methods. Different Microspheres formulations were prepared by the water in oil (w\o) emulsion solvent evaporation technique and subsequently evaluated for its different physical parameters as well as its in vitro and in vivo drug release study. Results. The formulations F2 (98.42) and F3 (98.03) showed a constant and high release in the dissolution profile, so among these two formulations, F2 was taken for development study, due to the better result shown over in other evaluation parameters. From the HPLC determinations after in vivo study, it had been found that the test samples and the standard sample had not shown any significant fluctuation in relation to their retention time. Conclusion. From in vitro and in vivo results, it may be concluded that drug-loaded pectin microspheres in 1 : 1 ratio are a suitable delivery system for metformin hydrochloride and may be used for effective management of NIDDM. From this experiment, it could be concluded that as a natural polymer, pectin has potentiality in novel drug delivery system.

15.
Saudi Pharm J ; 17(3): 233-41, 2009 Jul.
Article in English | MEDLINE | ID: mdl-23964166

ABSTRACT

Hydroxy propyl methyl cellulose (HPMC) 5cPs, an aqueous soluble polymer was employed for coating diclofenac sodium (DFS) tablets 25 mg for protecting the integrity of the drug yet rendering the drug to release at a faster rate on contact with the gastric environment. Proper optimization for the aqueous based film coating formulation was undertaken primarily employing plasticizers like polyethylene glycol (PEG) 400 and propylene glycol (PG). The defect free selected formulations were further subjected for studying the effects of surfactants like sodium lauryl sulphate (SLS) and Tween-80 along with the plasticizers. The quality of the aqueous film coats or the plasticizer efficiency in case of PEG-400 is in the order 1.5 > 0.5 > 1.0% and for PG 1 > 4 > 3% which can be stated on the basis of less incidence of major coat defects like chipping, cracking, orange peel, roughness, blistering, blooming, picking. The quality of aqueous film coat or the surfactant efficiency in case of SLS + PEG-400 is in the order 0.3 < 0.5 < 0.1% and SLS + PG is in the order 0.5 < 0.1 < 0.3%. In case of Tween-80 + PEG-400 the order is 0.3 < 0.5 < 0.1% and Tween-80 + PG is in the order 0.3 < 0.1 < 0.5%. Elegant film formation can be stated from fewer incidences of coat defects. The obtained coated tablets eventually satisfied all the normal physical parameters like thickness, weights, and weight gain, drug content, crushing strength, percent friability, disintegration time, dissolution profile and possible drug-polymer interactions. ANOVA was undertaken followed by Dunnet multiple comparison for the dissolution profile considering uncoated as the standard. The difference was considered significant at p â©½ 0.01.

SELECTION OF CITATIONS
SEARCH DETAIL
...