Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Therapie ; 2024 Jan 23.
Article Fr | MEDLINE | ID: mdl-38341320

The number of elderly people with type 2 diabetes (T2D) is increasing worldwide. Community pharmacies, thanks to their proximity, provide more easy access to therapeutic education for rural patients. Populations living in isolated areas require specific educational resources related to their condition. The aim of this project was to perform a short (FLASH) educational intervention, coordinated by community pharmacists, and then evaluate the impact of this intervention on patient knowledge of their disease. The study was performed in Issoudun, a rural French town of approximately 10,000 inhabitants. Educational priorities were defined and the project was presented to health authorities and local health professionals. Pharmacies in Issoudun recruited patients, either alone or accompanied by their caregivers. The educational intervention lasted 2h and focused on 4 teaching objectives: knowledge concerning diabetes, diabetic complications and how to monitor them; how to react to hypoglycemia; understanding treatments; and understanding glycated hemoglobin. The impact of this educational intervention was assessed using a questionnaire delivered before the intervention, immediately after, and after 6months. Forty-five patients aged 71±6years with T2D duration of 14±6years were recruited over 6months. Some false beliefs were identified before the intervention. The educational session led to a significant improvement in the percentage of correct answers (before: 60.3%±7.5, after: 99%±0.4, P=0.0002) and at 6months (99.5%±0.3, P=0.0002) compared with the patients' initial knowledge. Almost all false beliefs were corrected by the intervention and patients were able to recall the mechanism of action of their drugs, with the help of a "key and lock" schematic. This short FLASH educational intervention, coordinated by community pharmacists, showed that the model was both interesting to patients and effective. This method could be expanded to other rural communities and medical deserts.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38399359

Among the vinca-alkaloid class, vincristine is a potent chemotherapeutic agent with significant neurotoxic effects and is employed to address a wide spectrum of cancer types. Recently, the therapeutic potential of the cholecystokinin type 2 receptor (CCK2R) as a target for vincristine-induced peripheral neuropathy (VIPN) was demonstrated. In this study, the impact of preventive CCK2R blockade using netazepide (Trio Medicines Ltd., London, UK) was investigated in a mouse model of vincristine-induced peripheral neuropathy. Netazepide is a highly selective CCK2R antagonist under development for the treatment of patients with gastric neuroendocrine tumors caused by hypergastrinemia secondary to chronic autoimmune atrophic gastritis. Vincristine-induced peripheral neuropathy was induced by intraperitoneal injections of vincristine at 100 µg/kg/d for 7 days (D0 to D7). Netazepide (2 mg/kg/d or 5 mg/kg/d, per os) was administered one day before vincristine treatment until D7. Vincristine induced a high tactile allodynia from D1 to D7. VIPN was characterized by dorsal root ganglion neuron (DRG) and intraepidermal nerve fiber (IENF) loss, and enlargement and loss of myelinated axons in the sciatic nerve. Netazepide completely prevented the painful symptoms and nerve injuries induced by vincristine. In conclusion, the fact that netazepide protected against vincristine-induced peripheral neuropathy in a mouse model strongly supports the assessment of its therapeutic potential in patients receiving such chemotherapy.

3.
Pharmaceutics ; 16(1)2024 Jan 20.
Article En | MEDLINE | ID: mdl-38276509

The occurrence of neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting effect of many commonly-used anticancer agents. Polyvalent human immunoglobulins (hIg), used in the treatment of several peripheral neuropathies, may alleviate neuropathic pain. The aim of this project was to investigate the preventive effect of hIg in two mouse models of CIPN, induced by vincristine (VCR, 100 µg/kg/d) and oxaliplatin (OXP, 6 mg/kg/3d). Human Ig were administered one day before the first injection of chemotherapy. The onset of CIPN and effects of hIg were assessed via functional tests and morphological analyses of sensory nerves. To evaluate the effect of hIg on chemotherapy cytotoxicity, viability assays were performed using hIg (0 to 12 mg/mL) combined with anticancer agents on human cancer cell lines. The preventive treatment with hIg alleviated tactile hypersensitivity and nerve injuries induced by VCR. It also alleviated tactile/cold hypersensitivities and nerve injuries induced by OXP. Treatment with hIg did not affect the cytotoxicity of either chemotherapy. Furthermore, in combination with VCR, hIg potentiated chemo-induced cell death. In conclusion, hIg is a promising therapy to prevent the onset of CIPN and potentiate chemotherapy effect on cancer, reinforcing the interest in hIg in the management of CIPN.

4.
Toxics ; 11(12)2023 Dec 08.
Article En | MEDLINE | ID: mdl-38133405

Blood biomarkers, including neurofilament light chain (NfL), have garnered attention as potential indicators for chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting adverse effect of neurotoxic anticancer drugs. However, no blood biomarker has been established for routine application or translational research. This pilot study aimed to evaluate a limited panel of blood biomarkers in rat models of CIPN and their correlations with neuropathic pain. CIPN models were induced through repeated injections of oxaliplatin, paclitaxel, bortezomib, and vincristine. Electronic von Frey testing was used to assess tactile allodynia. Post anticancer injections, serum concentrations of 31 proteins were measured. Allodynia thresholds decreased in anticancer-treated animals compared to controls. No consistent modifications were observed in the biomarkers across CIPN models. The most noteworthy biomarkers with increased concentrations in at least two CIPN models were NfL (paclitaxel, vincristine), MCP-1, and RANTES (oxaliplatin, vincristine). Vincristine-treated animals exhibited strong correlations between LIX, MCP-1, NfL, and VEGF concentrations and tactile allodynia thresholds. No single biomarker can be recommended as a unique indicator of CIPN-related pain. Because of the study limitations (single dose of each anticancer drug, young animals, and single time measurement of biomarkers), further investigations are necessary to define the kinetics, specificities, and sensitivities of MCP-1, RANTES, and NfL.

5.
Toxicol Appl Pharmacol ; 474: 116624, 2023 09 01.
Article En | MEDLINE | ID: mdl-37419214

Antibody-drug conjugates (ADCs) are anticancer drugs consisting of a monoclonal antibody, targeting selective tumor antigens, to which has been frequently associated a highly potent cytotoxic agent, the monomethyl auristatin E (MMAE) using a chemical linker. MMAE is a tubulin polymerization inhibitor derived from dolastin-10. These MMAE-ADCs are responsible for peripheral nerve toxicities. Our objective was to develop and characterize a mouse model of MMAE-induced peripheral neuropathy induced by free MMAE injections. MMAE was injected in Swiss mice at 50 µg/kg i.p. every other day for 7 weeks. Assessments of motor and sensory nerve functions were performed once a week on MMAE and Vehicle-treated mice. Sciatic nerve and paw skin were removed at the end of experiment for subsequent immunofluorescence and morphological analysis. MMAE did not affect motor coordination, muscular strength and heat nociception, but significantly induced tactile allodynia in MMAE-treated mice compared with Vehicle-treated mice from day 35 to day 49. MMAE significantly reduced myelinated and unmyelinated axon densities in sciatic nerves and led to a loss of intraepidermal nerve fiber in paw skin. In summary, long course of low dose of MMAE induced a peripheral sensory neuropathy associated with nerve degeneration, without general state alteration. This model may represent a ready accessible tool to screen neuroprotective strategies in the context of peripheral neuropathies induced by MMAE-ADCs.


Antineoplastic Agents , Immunoconjugates , Peripheral Nervous System Diseases , Animals , Mice , Peripheral Nervous System Diseases/chemically induced , Antineoplastic Agents/pharmacology , Oligopeptides/toxicity , Immunoconjugates/chemistry , Disease Models, Animal , Xenograft Model Antitumor Assays , Cell Line, Tumor
6.
Therapie ; 78(1): 10-18, 2023.
Article En | MEDLINE | ID: mdl-36528417

The repurposing of a medicine already on the market to a new indication could be an opportunity to respond rapidly to a therapeutic need not yet covered, particularly in the context of rare and neglected diseases, or health emergencies. However, at each stage, difficulties may arise that will prevent the repurposed drug from being provided to patients. Beyond fortuity or a systematic strategy to detect a useful pharmacological effect, the implementation of the preclinical and clinical stages is sometimes complicated by the difficulty of accessing the molecule and its pharmaceutical data. Furthermore, relevant clinical results will not always be sufficient to ensure that a marketing authorisation is obtained or that patients receive satisfactory care. In addition to describing these various obstacles, the round table provided an opportunity to put forward recommendations for overcoming them, in particular the creation of a public-private partnership structure with sufficient funding to be able to offer individualised support for projects up to and including the marketing application.


Drug Repositioning , Humans , Public-Private Sector Partnerships , Marketing
8.
Pharmaceutics ; 14(12)2022 Dec 16.
Article En | MEDLINE | ID: mdl-36559317

Vincristine (VCR) is responsible for the onset of the VCR-induced peripheral neuropathy (VIPN), associated with neuropathic pain. Several reports have strongly linked the cholecystokinin type 2 receptor (CCK2R) to nociceptive modulation. Thus, our aim was to evaluate the effect of CCK2R blockade on the onset of VIPN, as well as its interaction on VCR anticancer efficacy. VCR was administrated in mice for 8 days (100 µg/kg/d, i.p.). Transcriptomic analysis of the dorsal root ganglia (DRG) was performed at day 7 in VCR and control mice. Proglumide (30 mg/kg/d), a CCK1R and CCK2R antagonist, and Ly225910 (1 mg/kg/d), a selective CCK2R antagonist, were administrated one day before and during VCR treatment. Tactile sensitivity was assessed during treatments. Immunofluorescence and morphological analyses were performed on the skin, DRG and sciatic nerve at day 7. The cytotoxicity of VCR in combination with proglumide/Ly225910 was evaluated in human cancer cell lines. Cck2r was highly upregulated in the DRG of VCR mice. Proglumide accelerated the recovery of normal sensitivity, while Ly225910 totally prevented the onset of allodynia and nerve injuries induced by VCR. Proglumide or Ly225910 in combination with VCR did not affect the cytotoxicity of VCR. Targeting CCK2R could therefore be an effective strategy to prevent the onset of VIPN.

9.
J Clin Med ; 11(10)2022 May 23.
Article En | MEDLINE | ID: mdl-35629066

Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and dose-limiting adverse side effect of treatment. CIPN affects the oncological prognosis of patients, as well as their quality of life. To date, no specific pharmacological therapy has demonstrated effectiveness in preventing CIPN. Accumulating preclinical evidence suggests that renin-angiotensin system (RAS) inhibitors may have neuroprotective effects. One hundred and twenty patients were included in this observational study and were followed from the beginning of their neurotoxic chemotherapy schedule until their final assessment, at least one month after its cessation. The National Cancer Institute's common toxicity criteria 4.0 (NCI-CTC 4.0) were used to grade the severity of adverse events. Follow-ups also included electrochemical skin conductance and scales for pain, quality of life and disability. Among patients receiving a platinum-based regimen, the mean grade of sensory neuropathy (NCI-CTC 4.0) was significantly lower in the RAS inhibitor group after the end of their anticancer treatment schedule. Because of the observational design of the study, patients in the RAS inhibitor group cumulated comorbidities at risk of developing CIPN. Randomized controlled trials in platinum-based regimens would be worth conducting in the future to confirm the neuroprotective potential of RAS inhibitors during chemotherapy.

10.
Pharmaceutics ; 14(4)2022 Apr 12.
Article En | MEDLINE | ID: mdl-35456682

Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent models of peripheral neuropathy. The protective role of the angiotensin II type 2 receptor (AT2) in the central and peripheral nervous systems is well-established. Here, we evaluate the effects of ramipril in the prevention of PIPN and the involvement of AT2 in this effect. Paclitaxel was administered in wild type or AT2-deficient mice on alternate days for 8 days, at a cumulative dose of 8 mg/kg (2 mg/kg per injection). Ramipril, PD123319 (an AT2 antagonist), or a combination of both were administered one day before PTX administration, and daily for the next twenty days. PTX-administered mice developed mechanical allodynia and showed a loss of sensory nerve fibers. Ramipril prevented the functional and morphological alterations in PTX mice. The preventive effect of ramipril against tactile allodynia was completely absent in AT2-deficient mice and was counteracted by PD123319 administration in wild type mice. Our work highlights the potential of ramipril as a novel preventive treatment for PIPN, and points to the involvement of AT2 in the neuroprotective role of ramipril in PIPN.

11.
Pharmacol Res Perspect ; 10(1): e00908, 2022 02.
Article En | MEDLINE | ID: mdl-35147294

Regarding animal experiments in pharmacology teaching, ethical considerations led us to examine an alternative approach to the use of living animals. This study aimed to assess whether digital tools could replace live animal experiments in terms of motivation and knowledge acquisition. The study was carried out with students enrolled in the 5th year of the industry/research stream at the Faculty of Pharmacy of the University of Limoges. The participants were randomly assigned to groups of traditional or digital teaching methods, with the common theme of the class being the effect of a diuretic agent (furosemide) in rats. The scenario and learning objectives were identical for the two groups. Before the class and after randomization, the acceptance of the digital educational material was assessed with a scale, which predicts the acceptability of users according to individual dimensions and social representations, followed by the assessment of the motivation by a situational motivation scale (SIMS) for both groups. After the class, the students' motivation was assessed by a questionnaire based on Deci and Ryan's self-determination theory. In the end, the participants were evaluated for homogeneity, based on general knowledge of renal pharmacology, and for knowledge acquisition concerning specific knowledge related to this teaching session. This study revealed a good acceptance of the digital tool and a good motivation toward the digital method among all the students. It found the two teaching methods (digital and traditional) to be equivalent in terms of motivation and knowledge acquisition. In our study, digital pedagogical tools as an alternative to live animals did not affect students' motivation and knowledge acquisition.


Animal Testing Alternatives/methods , Education, Pharmacy/methods , Pharmacology/education , Students, Pharmacy/psychology , Animals , Computer-Assisted Instruction/methods , Diuretics/pharmacology , Educational Measurement , Educational Technology/methods , France , Furosemide/pharmacology , Humans , Motivation , Rats , Surveys and Questionnaires
12.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34832967

Over the past decades, accumulating evidence has demonstrated a pivotal role of cholecystokinin type 2 receptor (CCK2R) in pain modulation. The established role of CCK2R activation in directly facilitating nociception has led to the development of several CCK2R antagonists, which have been shown to successfully alleviate pain in several rodent models of pain. However, the outcomes of clinical trials are more modest since they have not demonstrated the expected biological effect obtained in animals. Such discordances of results between preclinical and clinical studies suggest reconsidering our knowledge about the molecular basis of the pharmacology and functioning of CCK2R. This review focuses on the cellular localization of CCK2R specifically in the sensory nervous system and discusses in further detail the molecular mechanisms and signal transduction pathways involved in controlling pain perception. We then provide a comprehensive overview of the most successful compounds targeting CCK2R and report recent advances in pharmacological strategies used to achieve CCK2R modulation. We purposely distinguish between CCK2R benefits obtained in preclinical models and outcomes in clinical trials with different pain etiologies. Lastly, we emphasize the biological and clinical relevance of CCK2R as a promising target for the development of new treatments for pain management.

13.
Front Pharmacol ; 12: 712442, 2021.
Article En | MEDLINE | ID: mdl-34349658

Oxaliplatin is a key drug for colorectal cancer that causes OXP-induced peripheral neuropathy, a dose-limiting effect characterized by cold and tactile hyperesthesia. The relationship between the sensory nervous system and modulation of the renin-angiotensin system has been described, focusing on pain and neurodegeneration in several animal models. We assessed the effect of the RAS modulator, ramipril, an angiotensin converting-enzyme inhibitor in a mouse model of OXP-induced acute pain syndrome. OXP was administered in Swiss mice at a cumulative dose of 15 mg/kg (3 x 5 mg/kg/3 days, i.p.). RAM was administered i.p. every day from 24 h before the first OXP injection until the end of the experiments. We evaluated OIAS development and treatment effects by sensorimotor tests, intraepidermal nerve fiber and dorsal root ganglia-neuron immunohistochemical analyses, and sciatic nerve ultrastructural analysis. OXP-treated mice showed tactile allodynia and cold hypersensitivity, without motor impairment and evidence of nerve degeneration. RAM prevented cold sensitivity and improved recovery of normal tactile sensitivity in OXP-treated mice. Our finding that RAM alleviates OXP-induced pain is a step towards evaluating its therapeutic potential in patients receiving OXP treatment.

14.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 24.
Article En | MEDLINE | ID: mdl-33668331

Preclinical evidence, accumulated over the past decade, indicates that the angiotensin II type 2 receptor (AT2R) stimulation exerts significant neuroprotective effects in various animal models of neuronal injury, notably in the central nervous system. While the atypical G protein-coupled receptor superfamily nature of AT2R and its related signaling are still under investigation, pharmacological studies have shown that stimulation of AT2R leads to neuritogenesis in vitro and in vivo. In this review, we focus on the potential neuroprotective and neuroregenerative roles of AT2R specifically in the peripheral nervous system (PNS). The first section describes the evidence for AT2R expression in the PNS and highlights current controversies concerning the cellular distribution of the receptor. The second section focuses on AT2R signaling implicated in neuronal survival and in neurite outgrowth. The following sections review the relatively few preclinical studies highlighting the putative neuroprotective and neuroregenerative effects of AT2R stimulation in the context of peripheral neuropathy.

15.
Fundam Clin Pharmacol ; 35(3): 506-523, 2021 Jun.
Article En | MEDLINE | ID: mdl-33107619

Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting side effect induced by a variety of chemotherapeutic agents. Symptoms are mainly sensory: pain, tingling, numbness, and temperature sensitivity. They may require the tapering of chemotherapy regimens or even their cessation; thus, the prevention/treatment of CIPN is critical to increase effectiveness of cancer treatment. However, CIPN management is mainly based on conventional neuropathic pain treatments, with poor clinical efficacy. Therefore, significant effort is made to identify new pharmacological targets to prevent/treat CIPN. Animal modeling is a key component in predicting human response to drugs and in understanding the pathophysiological mechanisms underlying CIPN. In fact, studies performed in rodents highlighted several pharmacological targets to treat/prevent CIPN. This review provides updated information about ongoing clinical trials testing drugs for the management of CIPN and presents some of their proof-of-concept studies conducted in rodent models. The presented drugs target oxidative stress, renin-angiotensin system, glutamatergic neurotransmission, sphingolipid metabolism, neuronal uptake transporters, nicotinamide adenine dinucleotide metabolism, endocannabinoid system, transient receptor potential channels, and serotoninergic receptors. As some clinical trials focus on the effect of the drugs on pain, others evaluate their efficacy by assessing general neuropathy. Moreover, based on studies conducted in rodent models, it remains unclear if some of the tested drugs act in an antinociceptive fashion or have neuroprotective properties. Thus, further investigations are needed to understand their mechanism of action, as well as a global standardization of the methods used to assess efficacy of new therapeutic strategies in the treatment of CIPN.


Antineoplastic Agents/adverse effects , Neuralgia/chemically induced , Neuralgia/drug therapy , Animals , Antineoplastic Agents/pharmacology , Clinical Trials as Topic , Drug Evaluation, Preclinical , Endocannabinoids/metabolism , Glutamates/drug effects , Humans , NAD/metabolism , Neuralgia/physiopathology , Oxidative Stress/drug effects , Pain/drug therapy , Receptors, Serotonin/drug effects , Renin-Angiotensin System/drug effects , Rodentia , Sphingolipids/metabolism , Transient Receptor Potential Channels/drug effects
16.
J Neuropathol Exp Neurol ; 79(5): 542-550, 2020 05 01.
Article En | MEDLINE | ID: mdl-32296845

Polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, skin changes (POEMS) syndrome is a rare systemic disorder linked to plasma cell dyscrasia and is related to elevation of vascular endothelial growth factor (VEGF). Diagnosis is still challenging and pathophysiology unclear. Because VEGF drives neovascularization, we investigated skin and nerve vascularization in 6 patients with POEMS syndrome compared with 5 control groups of polyneuropathies and healthy subjects (n = 104) from the University Hospital of Limoges between 2009 and 2018. We evaluated loss of small and large fibers in these patients. Skin and nerve vascularization were quantified manually on immunofluorescence using vessel staining (anti-α-SMA antibody). Dermal vascularization was significantly higher in POEMS syndrome than in other groups, but unrelated to loss of small fibers and VEGF. Perineurial vascularization was higher in POEMS syndrome than in healthy controls, and was related to loss of large fibers and VEGF level. Our study highlights the existence of neovascularization in skin of patients with this rare disorder. These data suggest that skin neovascularization could be an additional biomarker to help in the diagnosis and understanding of POEMS syndrome. Moreover, nerve neovascularization, driven by VEGF overexpression, may play a role in the pathophysiology of large fiber loss in this condition.


Neovascularization, Pathologic/complications , POEMS Syndrome/pathology , Peroneal Nerve/pathology , Skin/pathology , Sural Nerve/pathology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Nerve Fibers/pathology , POEMS Syndrome/complications , Skin/blood supply
17.
Therapie ; 74(6): 633-643, 2019 Dec.
Article Fr | MEDLINE | ID: mdl-31097329

Neuropathic pain is defined as pain caused by a lesion or a disease affecting the somatosensory nervous system. Development of neuropathic pain is induced by many pathophysiological mechanisms affecting pain pathways. Neuropathic pain has diverse origins, making its management difficult, hence, many patients with neuropathic pain do not receive appropriate treatment. In 2015, a revision of the Neuropathic Pain Special Interest Group's (NeuPSIG) previous recommendations, based on a systematic review and meta-analysis, evaluated the efficacy of systemic and topical treatments of neuropathic pain. Treatments lines were established using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE), which allows to rate the quality of evidence and the strength of recommendations. First line treatments are gabapentin and pregabalin, noradrenalin and serotonin reuptake inhibitors and tricyclic antidepressants. Capsaicin and lidocaine patches are second line treatments, tramadol and strong opioids are third line treatments. This work also highlighted molecules with inconclusive recommendations or non-recommended pharmacological treatments based on a low quality of evidence, a lack of efficacy or a bad safety profile. The objective of this paper is to present the different treatments and to detail their mechanisms of action.


Neuralgia/drug therapy , Analgesics/therapeutic use , Analgesics, Opioid/therapeutic use , Antidepressive Agents/therapeutic use , Evidence-Based Practice , Humans , Neuralgia/diagnosis , Neuralgia/epidemiology , Neuralgia/etiology , Pain Management/methods , Pain Management/statistics & numerical data , Practice Guidelines as Topic/standards , Randomized Controlled Trials as Topic/statistics & numerical data
18.
Front Neurosci ; 13: 348, 2019.
Article En | MEDLINE | ID: mdl-31031586

In this review, we draw attention to the roles of calcitriol (1,25-dihydroxyvitamin D3) in the trophicity of the peripheral nervous system. Calcitriol has long been known to be crucial in phosphocalcium homeostasis. However, recent discoveries concerning its involvement in the immune system, anti-cancer defenses, and central nervous system development suggest a more pleiotropic role than previously thought. Several studies have highlighted the impact of calcitriol deficiency as a promoting factor of various central neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Based on these findings and recent publications, a greater role for calcitriol may be envisioned in the peripheral nervous system. Indeed, calcitriol is involved in myelination, axonal homogeneity of peripheral nerves, and neuronal-cell differentiation. This may have useful clinical consequences, as calcitriol supplementation may be a simple means to avoid the onset and/or development of peripheral nervous-system disorders.

19.
Pain ; 159(12): 2538-2546, 2018 Dec.
Article En | MEDLINE | ID: mdl-30086116

Peripheral neuropathy is the major dose-limiting side effect of many currently used chemotherapies, such as vincristine (VCR). We recently demonstrated that candesartan, an angiotensin II type 1 receptor antagonist, was neuroprotective against resiniferatoxin-induced sensory neuropathy, and that this effect is mediated by stimulation of the angiotensin II type 2 receptor (AT2R). Thus, we evaluated the effect of preventive treatment with candesartan and a specific AT2R agonist, C21, on a mouse model of VCR-induced neuropathy. Vincristine was administered daily for 7 days to male Swiss mice. Treatment with candesartan and C21 was started on day 1, before VCR treatment, and continued until day 7. We evaluated the development of VCR-induced neuropathy and the effect of treatment by functional tests, immunohistochemical analyses of intraepidermal nerve fibers and dorsal root ganglia neurons, and ultrastructural analysis of the sciatic nerve. Mice treated with VCR showed high mechanical allodynia but no modifications of motor performance or mechanical/thermal nociception. Treatment with candesartan and C21 completely restored normal tactile sensitivity of VCR-treated mice. Both drugs prevented VCR-induced nonpeptidergic intraepidermal nerve fiber loss. Only C21 displayed neuroprotective effects against VCR-induced loss and enlargement of myelinated nerve fibers in the sciatic nerve. Our finding that candesartan and C21 are protective against VCR-induced neuropathic pain through AT2R stimulation favors evaluation of its therapeutic potential in patients receiving chemotherapy.


Angiotensin II Type 1 Receptor Blockers/therapeutic use , Benzimidazoles/therapeutic use , Hyperalgesia/drug therapy , Neuroprotective Agents/therapeutic use , Tetrazoles/therapeutic use , Angiotensin II Type 2 Receptor Blockers/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/toxicity , Biphenyl Compounds , Disease Models, Animal , Diterpenes/toxicity , Ganglia, Spinal/cytology , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Imidazoles/therapeutic use , Male , Mice , Motor Activity/drug effects , Neural Conduction/drug effects , Neurons/metabolism , Neurotoxins/toxicity , Nociception/drug effects , Pyridines/therapeutic use , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Skin/metabolism , Vincristine/toxicity
20.
J Neuropathol Exp Neurol ; 77(4): 274-281, 2018 04 01.
Article En | MEDLINE | ID: mdl-29408953

Charcot-Marie-Tooth disease type 1A (CMT1A), the most common form of Charcot-Marie-Tooth diseases, is a demyelinating neuropathy caused by a deletion encompassing the gene coding for PMP22, a myelin protein of the peripheral nervous system. Although myelinated fibers are mostly involved in CMT1A, some patients experience neuropathic pain. We thus investigated whether unmyelinated fibers are lost in CMT1A. Skin biopsies were taken from the distal portion of the leg of 80 patients with CMT1A as part of the PXT30003-01 study and processed for quantification of intraepidermal nerve fiber density (IENFD). Mean IENFD was significantly lower in CMT1A patients than in healthy controls. Although the data were highly dispersed, IENFD tended to decrease with age and was higher overall in female patients and controls than male patients and controls. This study shows that small nerve fibers are affected in CMT1A and that this correlates with pin sensitivity. The density of epidermal Langerhans cells (LCs) was also significantly reduced in CMT1A patients, suggesting the involvement of LCs in neuropathic pain processes. These findings raise several questions concerning the interactions of Schwann cells and LCs with unmyelinated fibers in CMT1A. Moreover, they suggest that factors other than PMP22 gene dosage are involved in small fiber pathology in CMT1A.


Charcot-Marie-Tooth Disease/pathology , Myelin Sheath/pathology , Nerve Fibers/pathology , Skin/pathology , Adult , Biopsy , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Female , Humans , Male , Middle Aged , Myelin Proteins/genetics , Myelin Proteins/metabolism , Myelin Sheath/metabolism , Nerve Fibers/physiology , Neural Conduction/physiology , Severity of Illness Index , Visual Analog Scale
...