Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
mSphere ; : e0053024, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365076

ABSTRACT

Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.

2.
J Virol ; : e0111324, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213164

ABSTRACT

Bacteria exposed to bactericidal treatment, such as antibiotics or bacteriophages (phages), often develop resistance. While phage therapy is proposed as a solution to the antibiotic resistance crisis, the bacterial resistance emerging during phage therapy remains poorly characterized. In this study, we examined a large population of phage-resistant extra-intestinal pathogenic Escherichia coli 536 clones that emerged from both in vitro (non-limited liquid medium) and in vivo (murine pneumonia) conditions. Genome sequencing uncovered a convergent mutational pattern in phage resistance mechanisms under both conditions, particularly targeting two cell-wall components, the K15 capsule and the lipopolysaccharide (LPS). This suggests that their identification in vivo could be predicted from in vitro assays. Phage-resistant clones exhibited a wide range of fitness according to in vitro tests, growth rate, and resistance to amoeba grazing, which could not distinguish between the K15 capsule and LPS mutants. In contrast, K15 capsule mutants retained virulence comparable to the wild-type strain, whereas LPS mutants showed significant attenuation in the murine pneumonia model. Additionally, we observed that resistance to the therapeutic phage through a nonspecific mechanism, such as capsule overproduction, did not systematically lead to co-resistance to other phages that were initially capable or incapable of infecting the wild-type strain. Our findings highlight the importance of incorporating a diverse range of phages in the design of therapeutic cocktails to target potential future phage-resistant clones effectively. IMPORTANCE: This study isolated more than 50 phage-resistant mutants from both in vitro and in vivo conditions, exposing an extra-intestinal pathogenic Escherichia coli strain to a single virulent phage. The characterization of these clones revealed several key findings: (1) mutations occurring during phage treatment affect the same pathways as those identified in vitro; (2) the resistance mechanisms are associated with the modification of two cell-wall components, with one involving receptor deletion (phage-specific mechanism) and the other, less frequent, involving receptor masking (phage-nonspecific mechanism); (3) an in vivo virulence assay demonstrated that the absence of the receptor abolishes virulence while masking the receptor preserves it; and (4) clones with a resistance mechanism nonspecific to a particular phage can remain susceptible to other phages. This supports the idea of incorporating diverse phages into therapeutic cocktails designed to collectively target both wild-type and phage-resistant strains, including those with resistance mechanisms nonspecific to a phage.

3.
Antimicrob Agents Chemother ; 68(10): e0055424, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39194203

ABSTRACT

It has been shown that an evolutionary tradeoff between vertical (host growth rate) and horizontal (plasmid conjugation) transmissions contributes to global plasmid fitness. As conjugative IncC plasmids are important for the spread of multidrug resistance (MDR), in a broad range of bacterial hosts, we investigated vertical and horizontal transmissions of two multidrug-resistant IncC plasmids according to their backbones and MDR-region rearrangements, upon plasmid entry into a new host. We observed plasmid genome deletions after conjugation in three diverse natural Escherichia coli clinical strains, varying from null to high number depending on the plasmid, all occurring in the MDR region. The plasmid burden on bacterial fitness depended more on the strain background than on the structure of the MDR region, with deletions appearing to have no impact. Besides, we observed an increase in plasmid transfer rate, from ancestral host to new clinical recipient strains, when the IncC plasmid was rearranged. Finally, using a second set of conjugation experiments, we investigated the evolutionary tradeoff of the IncC plasmid during the critical period of plasmid establishment in E. coli K-12, by correlating the transfer rates of deleted or non-deleted IncC plasmids and their costs on the recipient strain. Plasmid deletions strongly improved conjugation efficiency with no negative growth effect. Our findings indicate that the flexibility of the MDR-region of the IncC plasmids can promote their dissemination, and provide diverse opportunities to capture new resistance genes. In a broader view, they suggest that the vertical-horizontal transmission tradeoff can be manipulated by the plasmid to improve its fitness.


Subject(s)
Conjugation, Genetic , Drug Resistance, Multiple, Bacterial , Escherichia coli , Plasmids , Plasmids/genetics , Escherichia coli/genetics , Drug Resistance, Multiple, Bacterial/genetics , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission
4.
Lancet Microbe ; 5(8): 100850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908389

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is a major public health threat, affecting not only people but also animals and the environment. The One Health dimension of AMR is well known; however, data are lacking on the circulation of resistance-conferring genes, particularly in low-income countries. In 2017, WHO proposed a protocol called Tricycle, focusing on extended-spectrum ß-lactamase (ESBL)-Escherichia coli surveillance in the three sectors (humans, animals, and the environment). We implemented Tricycle in Madagascar to assess ESBL-E coli prevalence and describe intrasector and intersector circulation of ESBL-E coli and plasmids. METHODS: In this prospective study, we collected blood culture data from hospitalised patients with a suspected bloodstream infection processed from May 1, 2018, to April 30, 2019, and rectal swabs from healthy pregnant women from July 30, 2018, to April 27, 2019, both from three hospitals in Antananarivo, Madagascar; and caeca from farm chickens and surface waters from the Ikopa river, wastewater, and slaughterhouse effluents in the Antananarivo area, Madagascar, from April 9, 2018, to April 30, 2019. All samples were tested for ESBL-E coli. The genomes of all isolates were sequenced using a short-read method on NextSeq 500 and NovaSeq 6000 platforms (Illumina, San Diego, CA, USA) and those carrying plasmid replicons using an additional long-read method on a MinION platform (Oxford Nanopore Technologies, Oxford, UK). We characterised genomes of isolated strains (sequence type, resistance and virulence gene content, and plasmid replicons). We then compared isolates using the variant calling method (single-nucleotide polymorphism). FINDINGS: Data from 1056 blood cultures were collected and 289 pregnant women, 246 chickens, and 28 surface waters were sampled. Of the blood cultures, 18 contained E coli, of which seven (39%) were ESBL. ESBL-E coli was present in samples from 86 (30%) of 289 pregnant women, 140 (57%) of 246 chickens, and 28 (100%) of 28 surface water samples. The wet season (November to April) was associated with higher rates of carriage in humans (odds ratio 3·08 [1·81-5·27]) and chickens (2·79 [1·65-4·81]). Sequencing of 277 non-duplicated isolates (82 from pregnant women, 118 from chickens, and 77 from environmental samples) showed high genetic diversity (90 sequence types identified) with sector-specific genomic features. Single nucleotide polymorphism (SNP) analysis revealed that 169 (61%) of 277 isolates grouped into 44 clusters (two or more isolates) of closely related isolates (<40 SNPs), of which 24 clusters contained isolates from two sectors and five contained isolates from all three sectors. ESBL genes were all blaCTX-M variants (215 [78%] of 277 being blaCTX-M-15) and were located on a plasmid in 113 (41%) of 277 isolates. These ESBL-carrying plasmids were mainly IncF (63 [55%] of 114; one strain carried two plasmids) and IncY (42 [37%] of 114). The F31/36:A4:B1 (n=13) and F-:A-:B53 (n=8) pMLST subtypes, and the IncY plasmids, which were all highly conserved, were observed in isolates of differing genetic backgrounds from all sectors and were transferable in vitro by conjugation. INTERPRETATION: Despite sector-specific population structures, both ESBL-E coli strains and plasmids are circulating among humans, chickens, and the environment in Antananarivo, Madagascar. The Tricycle protocol can be implemented in a low-income country and represents a powerful tool for investigating dissemination of AMR from a One Health perspective. FUNDING: Fondation Mérieux and INSERM, Université Paris Cité.


Subject(s)
Chickens , Escherichia coli Infections , Escherichia coli , beta-Lactamases , Animals , Chickens/microbiology , Madagascar/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Humans , beta-Lactamases/genetics , Prospective Studies , Female , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Plasmids/genetics , Pregnancy , Male , Adult , Young Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Middle Aged , Adolescent , Prevalence
5.
Cell Host Microbe ; 32(6): 900-912.e4, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38759643

ABSTRACT

Urinary tract infection (UTI), mainly caused by Escherichia coli, are frequent and have a recurrent nature even after antibiotic treatment. Potential bacterial escape mechanisms include growth defects, but probing bacterial division in vivo and establishing its relation to the antibiotic response remain challenging. Using a synthetic reporter of cell division, we follow the temporal dynamics of cell division for different E. coli clinical strains in a UTI mouse model with and without antibiotics. We show that more bacteria are actively dividing in the kidneys and urine compared with the bladder. Bacteria that survive antibiotic treatment are consistently non-dividing in three sites of infection. Additionally, we demonstrate how both the strain in vitro persistence profile and the microenvironment impact infection and treatment dynamics. Understanding the relative contribution of the host environment, growth heterogeneity, non-dividing bacteria, and antibiotic persistence is crucial to improve therapies for recurrent infections.


Subject(s)
Anti-Bacterial Agents , Cell Division , Disease Models, Animal , Escherichia coli Infections , Escherichia coli , Urinary Tract Infections , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Mice , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Cell Division/drug effects , Kidney/microbiology , Female , Urinary Bladder/microbiology , Microbial Viability/drug effects
6.
Microbiome ; 12(1): 50, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38468305

ABSTRACT

BACKGROUND: Antibiotics notoriously perturb the gut microbiota. We treated healthy volunteers either with cefotaxime or ceftriaxone for 3 days, and collected in each subject 12 faecal samples up to day 90. Using untargeted and targeted phenotypic and genotypic approaches, we studied the changes in the bacterial, phage and fungal components of the microbiota as well as the metabolome and the ß-lactamase activity of the stools. This allowed assessing their degrees of perturbation and resilience. RESULTS: While only two subjects had detectable concentrations of antibiotics in their faeces, suggesting important antibiotic degradation in the gut, the intravenous treatment perturbed very significantly the bacterial and phage microbiota, as well as the composition of the metabolome. In contrast, treatment impact was relatively low on the fungal microbiota. At the end of the surveillance period, we found evidence of resilience across the gut system since most components returned to a state like the initial one, even if the structure of the bacterial microbiota changed and the dynamics of the different components over time were rarely correlated. The observed richness of the antibiotic resistance genes repertoire was significantly reduced up to day 30, while a significant increase in the relative abundance of ß-lactamase encoding genes was observed up to day 10, consistent with a concomitant increase in the ß-lactamase activity of the microbiota. The level of ß-lactamase activity at baseline was positively associated with the resilience of the metabolome content of the stools. CONCLUSIONS: In healthy adults, antibiotics perturb many components of the microbiota, which return close to the baseline state within 30 days. These data suggest an important role of endogenous ß-lactamase-producing anaerobes in protecting the functions of the microbiota by de-activating the antibiotics reaching the colon. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Resilience, Psychological , Adult , Humans , Gastrointestinal Microbiome/genetics , beta-Lactamases/genetics , beta-Lactams/pharmacology , Healthy Volunteers , Anti-Bacterial Agents , Bacteria/genetics , Feces/microbiology
7.
Antimicrob Agents Chemother ; 68(4): e0145923, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38441061

ABSTRACT

Beta-lactamase-mediated degradation of beta-lactams is the most common mechanism of beta-lactam resistance in Gram-negative bacteria. Beta-lactamase-encoding genes can be transferred between closely related bacteria, but spontaneous inter-phylum transfers (between distantly related bacteria) have never been reported. Here, we describe an extended-spectrum beta-lactamase (ESBL)-encoding gene (blaMUN-1) shared between the Pseudomonadota and Bacteroidota phyla. An Escherichia coli strain was isolated from a patient in Münster (Germany). Its genome was sequenced. The ESBL-encoding gene (named blaMUN-1) was cloned, and the corresponding enzyme was characterized. The distribution of the gene among bacteria was investigated using the RefSeq Genomes database. The frequency and relative abundance of its closest homolog in the global microbial gene catalog (GMGC) were analyzed. The E. coli strain exhibited two distinct morphotypes. Each morphotype possessed two chromosomal copies of the blaMUN-1 gene, with one morphotype having two additional copies located on a phage-plasmid p0111. Each copy was located within a 7.6-kb genomic island associated with mobility. blaMUN-1 encoded for an extended-spectrum Ambler subclass A2 beta-lactamase with 43.0% amino acid identity to TLA-1. blaMUN-1 was found in species among the Bacteroidales order and in Sutterella wadsworthensis (Pseudomonadota). Its closest homolog in GMGC was detected frequently in human fecal samples. This is, to our knowledge, the first reported instance of inter-phylum transfer of an ESBL-encoding gene, between the Bacteroidota and Pseudomonadota phyla. Although the gene was frequently detected in the human gut, inter-phylum transfer was rare, indicating that inter-phylum barriers are effective in impeding the spread of ESBL-encoding genes, but not entirely impenetrable.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
8.
Sci Adv ; 10(6): eadj0767, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335294

ABSTRACT

Protein carboxymethyltransferase (Pcm) is a highly evolutionarily conserved enzyme that initiates the conversion of abnormal isoaspartate to aspartate residues. While it is commonly believed that Pcm facilitates the repair of damaged proteins, a number of observations suggest that it may have another role in cell functioning. We investigated whether Pcm provides a means for Escherichia coli to recycle aspartate, which is essential for protein synthesis and other cellular processes. We showed that Pcm is required for the energy production, the maintenance of cellular redox potential and of S-adenosylmethionine synthesis, which are critical for the proper functioning of many metabolic pathways. Pcm contributes to the full growth capacity both under aerobic and anaerobic conditions. Last, we showed that Pcm enhances the robustness of bacteria when exposed to sublethal antibiotic treatments and improves their fitness in the mammalian urinary tract. We propose that Pcm plays a crucial role in E. coli metabolism by ensuring a steady supply of aspartate.


Subject(s)
Aspartic Acid , Escherichia coli , Animals , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Anti-Bacterial Agents , Metabolic Networks and Pathways , Mammals/metabolism
9.
J Infect Dis ; 229(6): 1679-1687, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38214565

ABSTRACT

BACKGROUND: Escherichia coli is frequently responsible for bloodstream infections (BSIs). Among digestive BSIs, biliary infections appear to be less severe. Respective roles of host factors, bacterial determinants (phylogroups, virulence, and antibiotic resistance), and portal of entry on outcome are unknown. METHODS: Clinical characteristics and prognosis of 770 episodes of E coli BSI were analyzed and isolates sequenced (Illumina technology) comparing phylogroups, multilocus sequence type, virulence, and resistance gene content. BSI isolates were compared with 362 commensal E coli from healthy subjects. RESULTS: Among 770 episodes, 135 were biliary, 156 nonbiliary digestive, and 479 urinary. Compared to urinary infections, BSIs of digestive origin occurred significantly more in men, comorbid, and immunocompromised patients. Digestive portal of entry was significantly associated with septic shock and death. Among digestive infections, patients with biliary infections were less likely to die (P = .032), despite comparable initial severity. Biliary E coli resembled commensals (phylogroup distribution, sequence type, and few virulence-associated genes) whereas nonbiliary digestive and urinary strains carried many virulence-associated genes. CONCLUSIONS: Escherichia coli strains responsible for biliary infections exhibit commensal characteristics and are associated with lower mortality rates, despite similar initial severity, than other digestive BSIs. Biliary drainage in addition to antibiotics in the management of biliary infections may explain improved outcome.


Subject(s)
Bacteremia , Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Male , Escherichia coli Infections/microbiology , Female , Middle Aged , Bacteremia/microbiology , Aged , Adult , Virulence Factors/genetics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Aged, 80 and over , Multilocus Sequence Typing , Urinary Tract Infections/microbiology , Biliary Tract Diseases/microbiology , Phylogeny , Drug Resistance, Bacterial/genetics
10.
Antimicrob Agents Chemother ; 67(10): e0011123, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37702541

ABSTRACT

Multiresistance plasmids belonging to the IncI incompatibility group have become one of the most pervasive plasmid types in extended-spectrum beta-lactamase-producing Escherichia coli of animal origin. The extent of the burden imposed on the bacterial cell by these plasmids seems to modulate the emergence of "epidemic" plasmids. However, in vivo data in the natural environment of the strains are scarce. Here, we investigated the cost of a bla CTX-M-1-IncI1 epidemic plasmid in a commensal E. coli animal strain, UB12-RC, before and after oral inoculation of 15 6- to 8-week- old specific-pathogen-free pigs. Growth rate in rich medium was determined on (i) UB12-RC and derivatives, with or without plasmid, in vivo and/or in vitro evolved, and (ii) strains that acquired the plasmid in the gut during the experiment. Although bla CTX-M-1-IncI1 plasmid imposed no measurable burden on the recipient strain after conjugation and during the longitudinal carriage in the pig's gut, we observed a significant difference in the bacterial growth rate between IncI1 plasmid-carrying and plasmid-free isolates collected during in vivo carriage. Only a few mutations on the chromosome of the UB12-RC derivatives were detected by whole-genome sequencing. RNA-Seq analysis of a selected set of these strains showed that transcriptional responses to the bla CTX-M-1-IncI1 acquisition were limited, affecting metabolism, stress response, and motility functions. Our data suggest that the effect of IncI plasmid on host cells is limited, fitness cost being insufficient to act as a barrier to IncI plasmid spread among natural population of E. coli in the gut niche.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Swine , Anti-Bacterial Agents , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Escherichia coli Infections/microbiology
11.
PLoS Genet ; 19(8): e1010842, 2023 08.
Article in English | MEDLINE | ID: mdl-37531401

ABSTRACT

Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.


Subject(s)
Escherichia coli Infections , Sepsis , Humans , Escherichia coli , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Genes, Bacterial , Virulence/genetics , Sepsis/genetics , Phylogeny
12.
Nat Commun ; 14(1): 3667, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339949

ABSTRACT

The intrinsic virulence of extra-intestinal pathogenic Escherichia coli is associated with numerous chromosomal and/or plasmid-borne genes, encoding diverse functions such as adhesins, toxins, and iron capture systems. However, the respective contribution to virulence of those genes seems to depend on the genetic background and is poorly understood. Here, we analyze genomes of 232 strains of sequence type complex STc58 and show that virulence (quantified in a mouse model of sepsis) emerged in a sub-group of STc58 due to the presence of the siderophore-encoding high-pathogenicity island (HPI). When extending our genome-wide association study to 370 Escherichia strains, we show that full virulence is associated with the presence of the aer or sit operons, in addition to the HPI. The prevalence of these operons, their co-occurrence and their genomic location depend on strain phylogeny. Thus, selection of lineage-dependent specific associations of virulence-associated genes argues for strong epistatic interactions shaping the emergence of virulence in E. coli.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Mice , Virulence/genetics , Iron , Escherichia coli Infections/pathology , Genomic Islands/genetics , Genome-Wide Association Study , Phylogeny
13.
J Infect ; 87(3): 199-209, 2023 09.
Article in English | MEDLINE | ID: mdl-37369264

ABSTRACT

OBJECTIVE: Whole genome sequencing (WGS) of extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-E. coli) in developing countries is lacking. Here we describe the population structure and molecular characteristics of ESBL-E. coli faecal isolates in rural Southern Niger. METHODS: Stools of 383 healthy participants were collected among which 92.4% were ESBL-Enterobacterales carriers. A subset of 90 ESBL-E. coli containing stools (109 ESBL-E. coli isolates) were further analysed by WGS, using short- and long-reads. RESULTS: Most isolates belonged to the commensalism-adapted phylogroup A (83.5%), with high clonal diversity. The blaCTX-M-15 gene was the major ESBL determinant (98.1%), chromosome-integrated in approximately 50% of cases, in multiple integration sites. When plasmid-borne, blaCTX-M-15 was found in IncF (57.4%) and IncY plasmids (26.2%). Closely related plasmids were found in different genetic backgrounds. Genomic environment analysis of blaCTX-M-15 in closely related strains argued for mobilisation between plasmids or from plasmid to chromosome. CONCLUSIONS: Massive prevalence of community faecal carriage of CTX-M-15-producing E. coli was observed in a rural region of Niger due to the spread of highly diverse A phylogroup commensalism-adapted clones, with frequent chromosomal integration of blaCTX-M-15. Plasmid spread was also observed. These data suggest a risk of sustainable implementation of ESBL in community faecal carriage.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Niger/epidemiology , Anti-Bacterial Agents , beta-Lactamases/genetics , Plasmids/genetics
14.
J Travel Med ; 30(1)2023 02 18.
Article in English | MEDLINE | ID: mdl-36444951

ABSTRACT

BACKGROUND: Colistin is an antibiotic of last resort in the management of highly drug-resistant Enterobacterales infections. Travel to some destinations presents a high risk of acquiring multidrug-resistant Enterobacterales, but little data are available on the risk of acquiring colistin-resistant strains. Here, we use the VOYAG-R sample collection (2012-2013) in order to evaluate the rate of acquisition of colistin-resistant Enterobacterales, excluding species with intrinsic resistance (CRE), following travel to tropical regions. METHODS: A total of 574 frozen stool samples of travellers returning from tropical regions were screened for colistin-resistant strains using ChromID Colistin R agar (bioMerieux®) after pre-enrichment culture with 1 mg/L of colistin. Genomes were obtained by Illumina sequencing and genetic determinants of colistin resistance (mutational events and mcr genes) were searched. RESULTS: A total of 22 travellers (3.8%) acquired colistin-resistant Enterobacterales carrying an mcr gene. Acquisition rates varied between visited regions: 9.2% (18/195) for Asia (southeast Asia: 17/18), 2.2% (4/184) for Latin America (Peru: 4/4) and 0% from Africa (0/195). Acquired strains were predominantly Escherichia coli (92%) and carried mostly the mcr-1 variant (83%). Escherichia coli strains belonged mainly to commensal phylogroups A and B1, and were genetically highly diverse (5 non-clonal sequence type (ST)10 and 17 ST singletons). Only four non mcr colistin-resistant strains (two E. coli and two Enterobacter cloacae complex) were identified. Among all the strains, two also carried extended-spectrum beta-lactamase genes. CONCLUSIONS: Travel to tropical regions, and particularly to Southeast Asia, is a risk factor for the acquisition of mcr-carrying Enterobacterales. This study highlights the community dissemination of mcr in humans as early as 2012, 4 years prior to its first published description.


Subject(s)
Colistin , Escherichia coli Proteins , Humans , Escherichia coli , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , beta-Lactamases
15.
Gut Microbes ; 14(1): 2121577, 2022.
Article in English | MEDLINE | ID: mdl-36154446

ABSTRACT

Epidemiological projections point to acquisition of ever-expanding multidrug resistance (MDR) by Escherichia coli, a commensal of the digestive tract and a source of urinary tract pathogens. Bioinformatics analyses of a large collection of E. coli genomes from EnteroBase, enriched in clinical isolates of worldwide origins, suggest the Cytotoxic Necrotizing Factor 1 (CNF1)-toxin encoding gene, cnf1, is preferentially distributed in four common sequence types (ST) encompassing the pandemic E. coli MDR lineage ST131. This lineage is responsible for a majority of extraintestinal infections that escape first-line antibiotic treatment, with known enhanced capacities to colonize the gastrointestinal tract. Statistical projections based on this dataset point to a global expansion of cnf1-positive multidrug-resistant ST131 strains from subclade H30Rx/C2, accounting for a rising prevalence of cnf1-positive strains in ST131. Despite the absence of phylogeographical signals, cnf1-positive isolates segregated into clusters in the ST131-H30Rx/C2 phylogeny, sharing a similar profile of virulence factors and the same cnf1 allele. The suggested dominant expansion of cnf1-positive strains in ST131-H30Rx/C2 led us to uncover the competitive advantage conferred by cnf1 for gut colonization to the clinical strain EC131GY ST131-H30Rx/C2 versus cnf1-deleted isogenic strain. Complementation experiments showed that colon tissue invasion was compromised in the absence of deamidase activity on Rho GTPases by CNF1. Hence, gut colonization factor function of cnf1 was confirmed for another clinical strain ST131-H30Rx/C2. In addition, functional analysis of the cnf1-positive clinical strain EC131GY ST131-H30Rx/C2 and a cnf1-deleted isogenic strain showed no detectable impact of the CNF1 gene on bacterial fitness and inflammation during the acute phase of bladder monoinfection. Together these data argue for an absence of role of CNF1 in virulence during UTI, while enhancing gut colonization capacities of ST131-H30Rx/C2 and suggested expansion of cnf1-positive MDR isolates in subclade ST131-H30Rx/C2.


Subject(s)
Bacterial Toxins , Escherichia coli Infections , Escherichia coli Proteins , Gastrointestinal Microbiome , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Humans , Virulence Factors/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , rho GTP-Binding Proteins
16.
Appl Environ Microbiol ; 88(15): e0066422, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35862685

ABSTRACT

Escherichia coli is a commensal species of the lower intestine but is also a major pathogen causing intestinal and extraintestinal infections that is increasingly prevalent and resistant to antibiotics. Most studies on genomic evolution of E. coli used isolates from infections. Here, instead, we whole-genome sequenced a collection of 403 commensal E. coli isolates from fecal samples of healthy adult volunteers in France (1980 to 2010). These isolates were distributed mainly in phylogroups A and B2 (30% each) and belonged to 152 sequence types (STs), the five most frequent being ST10 (phylogroup A; 16.3%), ST73 and ST95 (phylogroup B2; 6.3 and 5.0%, respectively), ST69 (phylogroup D; 4.2%), and ST59 (phylogroup F; 3.9%), and 224 O:H serotypes. ST and serotype diversity increased over time. The O1, O2, O6, and O25 groups used in bioconjugate O-antigen vaccine against extraintestinal infections were found in 23% of the strains of our collection. The increase in frequency of virulence-associated genes and antibiotic resistance was driven by two evolutionary mechanisms. Evolution of virulence gene frequency was driven by both clonal expansion of STs with more virulence genes ("ST-driven") and increases in gene frequency within STs independent of changes in ST frequencies ("gene-driven"). In contrast, the evolution of resistance was dominated by increases in frequency within STs ("gene-driven"). This study provides a unique picture of the phylogenomic evolution of E. coli in its human commensal habitat over 30 years and will have implications for the development of preventive strategies. IMPORTANCE Escherichia coli is an opportunistic pathogen with the greatest burden of antibiotic resistance, one of the main causes of bacterial infections and an increasing concern in an aging population. Deciphering the evolutionary dynamics of virulence and antibiotic resistance in commensal E. coli is important to understand adaptation and anticipate future changes. The gut of vertebrates is the primary habitat of E. coli and probably where selection for virulence and resistance takes place. Unfortunately, most whole-genome-sequenced strains are isolated from pathogenic conditions. Here, we whole-genome sequenced 403 E. coli commensals isolated from healthy French subjects over a 30-year period. Virulence genes increased in frequency by both clonal expansion of clones carrying them and increases in frequency within clones, whereas resistance genes increased by within-clone increased frequency. Prospective studies of E. coli commensals should be performed worldwide to have a broader picture of evolution and adaptation of this species.


Subject(s)
Escherichia coli Infections , Escherichia coli , Aged , Animals , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Humans , Metagenomics , Phylogeny , Prospective Studies , Virulence/genetics , Virulence Factors/genetics
17.
Commun Biol ; 5(1): 599, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710940

ABSTRACT

Escherichia coli - one of the most characterized bacteria and a major public health concern - remains invisible across the temporal landscape. Here, we present the meticulous reconstruction of the first ancient E. coli genome from a 16th century gallstone from an Italian mummy with chronic cholecystitis. We isolated ancient DNA and reconstructed the ancient E. coli genome. It consisted of one chromosome of 4446 genes and two putative plasmids with 52 genes. The E. coli strain belonged to the phylogroup A and an exceptionally rare sequence type 4995. The type VI secretion system component genes appears to be horizontally acquired from Klebsiella aerogenes, however we could not identify any pathovar specific genes nor any acquired antibiotic resistances. A sepsis mouse assay showed that a closely related contemporary E. coli strain was avirulent. Our reconstruction of this ancient E. coli helps paint a more complete picture of the burden of opportunistic infections of the past.


Subject(s)
Escherichia coli Infections , Opportunistic Infections , Animals , Bile , Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Genome, Bacterial , Mice
18.
CPT Pharmacometrics Syst Pharmacol ; 11(7): 906-918, 2022 07.
Article in English | MEDLINE | ID: mdl-35583200

ABSTRACT

Recent studies have highlighted the importance of ecological interactions in dysbiosis of gut microbiota, but few focused on their role in antibiotic-induced perturbations. We used the data from the CEREMI trial in which 22 healthy volunteers received a 3-day course of ceftriaxone or cefotaxime antibiotics. Fecal samples were analyzed by 16S rRNA gene profiling, and the total bacterial counts were determined in each sample by flux cytometry. As the gut exposure to antibiotics could not be experimentally measured despite a marked impact on the gut microbiota, it was reconstructed using the counts of susceptible Escherichia coli. The dynamics of absolute counts of bacterial families were analyzed using a generalized Lotka-Volterra equations and nonlinear mixed effect modeling. Bacterial interactions were studied using a stepwise approach. Two negative and three positive interactions were identified. Introducing bacterial interactions in the modeling approach better fitted the data, and provided different estimates of antibiotic effects on each bacterial family than a simple model without interaction. The time to return to 95% of the baseline counts was significantly longer in ceftriaxone-treated individuals than in cefotaxime-treated subjects for two bacterial families: Akkermansiaceae (median [range]: 11.3 days [0; 180.0] vs. 4.2 days [0; 25.6], p = 0.027) and Tannerellaceae (13.7 days [6.1; 180.0] vs. 6.2 days [5.4; 17.3], p = 0.003). Taking bacterial interaction as well as individual antibiotic exposure profile into account improves the analysis of antibiotic-induced dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Anti-Bacterial Agents/adverse effects , Bacteria/genetics , Cefotaxime/adverse effects , Ceftriaxone/adverse effects , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics
19.
mBio ; 13(2): e0038522, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35377167

ABSTRACT

Toxin-antitoxin systems are genetic elements that are widespread in prokaryotes. Although molecular mode of action of many of these toxins has been identified, their biological functions are mostly unknown. We investigated the functional integration of the TisB/IstR toxin-antitoxin system in the Escherichia coli SOS genotoxic stress response network. We showed that the tisB gene is induced in cells exposed to high doses of the genotoxic antibiotic trimethoprim. However, we also found that TisB contributes to trimethoprim-induced lethality. This is a consequence of the TisB-induced drop in the proton motive force (PMF), which results in blocking the thymine import and therefore the functioning of the pyrimidine salvage pathway. Conversely, a TisB-induced PMF drop protects cells by preventing the import of some other toxic compounds, like the aminoglycoside antibiotic gentamicin and colicin M, in the SOS-induced cells. Colicins are cytotoxic molecules produced by Enterobacterales when they are exposed to strong genotoxic stresses in order to compete with other microbiota members. We indeed found that TisB contributes to E. coli's fitness during mouse gut colonization. Based on the results obtained here, we propose that the primary biological role of the TisB toxin is to increase the probability of survival and maintenance in the mammalian gut of their bacterial hosts when they have to simultaneously deal with massive DNA damages and a fierce chemical warfare with other microbiota members. IMPORTANCE The contribution of toxin-antitoxin systems to the persistence of bacteria to antibiotics has been intensively studied. This is also the case with the E. coli TisB/IstR toxin-antitoxin system, but the contribution of TisB to the persistence to antibiotics turned out to be not as straightforward as anticipated. In this study, we show that TisB can decrease, but also increase, cytotoxicity of different antibiotics. This inconsistency has a common origin, i.e., TisB-induced collapse of the PMF, which impacts the import and the action of different antibiotics. By taking into account the natural habitat of TisB bacterial hosts, the facts that this toxin-antitoxin system is integrated into the genotoxic stress response regulon SOS and that both SOS regulon and TisB are required for E. coli to colonize the host intestine, and the phenotypic consequences of the collapse of the PMF, we propose that TisB protects its hosts from cytotoxic molecules produced by competing intestinal bacteria.


Subject(s)
Colicins , Escherichia coli Infections , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Colicins/genetics , DNA Damage , Escherichia coli/metabolism , Mammals , Mice , Trimethoprim
20.
PLoS Genet ; 18(3): e1010112, 2022 03.
Article in English | MEDLINE | ID: mdl-35324915

ABSTRACT

Escherichia coli is an important cause of bloodstream infections (BSI), which is of concern given its high mortality and increasing worldwide prevalence. Finding bacterial genetic variants that might contribute to patient death is of interest to better understand infection progression and implement diagnostic methods that specifically look for those factors. E. coli samples isolated from patients with BSI are an ideal dataset to systematically search for those variants, as long as the influence of host factors such as comorbidities are taken into account. Here we performed a genome-wide association study (GWAS) using data from 912 patients with E. coli BSI from hospitals in Paris, France. We looked for associations between bacterial genetic variants and three patient outcomes (death at 28 days, septic shock and admission to intensive care unit), as well as two portals of entry (urinary and digestive tract), using various clinical variables from each patient to account for host factors. We did not find any association between genetic variants and patient outcomes, potentially confirming the strong influence of host factors in influencing the course of BSI; we however found a strong association between the papGII operon and entrance of E. coli through the urinary tract, which demonstrates the power of bacterial GWAS when applied to actual clinical data. Despite the lack of associations between E. coli genetic variants and patient outcomes, we estimate that increasing the sample size by one order of magnitude could lead to the discovery of some putative causal variants. Given the wide adoption of bacterial genome sequencing of clinical isolates, such sample sizes may be soon available.


Subject(s)
Bacteremia , Escherichia coli Infections , Sepsis , Bacteremia/epidemiology , Bacteremia/genetics , Bacteremia/microbiology , Bacteria , Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Genome-Wide Association Study , Humans
SELECTION OF CITATIONS
SEARCH DETAIL