Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 711
Filter
1.
J Environ Manage ; 369: 122412, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39236608

ABSTRACT

Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 µg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.

2.
Water Res X ; 24: 100246, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39220625

ABSTRACT

Aquaculture, producing half of global fish production, offers a high-quality protein source for humans. Improving nitrogen use efficiency (NUE) through microbial protein recovery is crucial for increasing fish production and reducing environmental footprint. However, the poor palatability and high moisture content of microbial protein make its utilization challenging. Here, a biofloc-worm reactor was integrated into a recirculating aquaculture system (BW_RAS) for the first time to convert microbial protein into Tubificidae (Oligochaeta) biomass, which was used as direct feed for culturing fish. Batch experiments indicated that an aeration rate of 0.132 m3 L -1 h -1 and a worm density of 0.3 g cm-2 on the carrier were optimal for microbial biomass growth and worm predation, respectively. Compared to the biofloc reactor-based recirculating aquaculture system (B_RAS), the BW_RAS improved water quality, NUE, and fish production by 17.1 % during a 120-day aquaculture period. The abundance of heterotrophic aerobic denitrifier Deinococcus in BW_RAS was one order of magnitude higher than in B_RAS, while heterotrophic bacteria Mycobacterium was more abundant in B_RAS. Denitrifiers cooperated with organic matter degraders and nitrogen assimilation bacteria for protein recovery and gaseous nitrogen loss while competing with predatory bacteria. Function prediction and qPCR indicated greater aerobic respiration, nitrate assimilation, nitrification (AOB-amoA), and denitrification (napA, nirK, nirS, nosZI), but lower fermentation in BWR compared to BR. This study demonstrated that BW_RAS increased microbial protein production and aerobic nitrogen cycling through ongoing worm predation, further enhancing fish production to a commercially viable level.

4.
Acc Chem Res ; 57(16): 2234-2244, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39115809

ABSTRACT

ConspectusThe origin of the single chirality of the chemical building blocks of life remains an intriguing topic of research, even after decades of experimental and theoretical work proposing processes that may break symmetry and induce chiral amplification, a term that may be defined as the enhancement of enantiomeric excess starting from prochiral substrates or from a racemic mixture or a small imbalance between enantiomers. Studies aimed at understanding prebiotically plausible pathways to these molecules have often neglected the issue of chirality, with a focus on the stereochemical direction of these reactions generally being pursued after reaction discovery. Our work has explored how the stereochemical outcome for the synthesis of amino acids and sugars might be guided to rationalize the origin of biological homochirality. The mechanistic interconnection between enantioenrichment in these two groups of molecules provides insights concerning the handedness extant in modern biology. In five separate examples involving the synthesis of life's building blocks, including sugars, RNA precursors, amino acids, and peptides, kinetic resolution emerges as a key protocol for enantioenrichment from racemic molecules directed by chiral source molecules. Several of these examples involve means not only for chiral amplification but also symmetry breaking and chirality transfer across a range of racemic monomer molecules. Several important implications emerge from these studies: one, kinetic resolution of the primordial chiral sugar, glyceraldehyde, plays a key role in a number of different prebiotically plausible reactions; two, the emergence of homochirality in sugars and amino acids is inherently intertwined, with clear synergy between the biological hand of each molecule class; three, the origin story for the homochirality of enzymes and modern metabolism points toward kinetic resolution of racemic amino acids in networks that later evolved to include sophisticated and complete catalytic and co-catalytic cycles; four, a preference for heterochiral ligation forming product molecules that cannot lead to biologically competent polymers can in fact be a driving force for a route to homochiral polymer chains; and five, enantioenrichment in complex mixtures need not be addressed one compound at a time, because kinetic resolution induces symmetry breaking and chirality transfer that may lead to general protocols rather than specific cases tailored to each individual molecule. Such chirality transfer mechanisms perhaps presage strategies utilized in modern biology.Our latest work extends the study of monomer enantioenrichment to the ligation of these molecules into the extended homochiral chains leading to the complex polymers of modern biology. A central theme in all of these reactions is the key role that kinetic resolution of a racemic mixture of amino acids or sugars plays in enabling enantioenrichment under prebiotically plausible conditions. This work has uncovered important trends in symmetry breaking, chirality transfer, and chiral amplification. Kinetic resolution of racemic mixtures emerges as a general solution for chiral amplification in prebiotic chemistry, leading to the single chirality of complex biological molecules and genetic polymers.


Subject(s)
Amino Acids , Stereoisomerism , Kinetics , Amino Acids/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Prebiotics , Origin of Life , Sugars/chemistry , RNA/chemistry
5.
Cell Commun Signal ; 22(1): 400, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143467

ABSTRACT

A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.


Subject(s)
Acne Vulgaris , Skin , Humans , Acne Vulgaris/genetics , Acne Vulgaris/pathology , Acne Vulgaris/metabolism , Skin/pathology , Skin/metabolism , Signal Transduction/genetics , Male , Macrophages/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Interleukin-13 Receptor alpha1 Subunit/genetics , Interleukin-13 Receptor alpha1 Subunit/metabolism , Female
6.
J Invest Dermatol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39182560

ABSTRACT

A precise regulation of gene expression depends on the accuracy of the three-dimensional (3D) structure of chromatin; however, the effects of 3D genome on gene expression in psoriasis remain unknown. In this study, we conducted Hi-C and RNA-seq on CD4+ T cells collected from five psoriasis patients and three healthy controls, and constructed a comprehensive 3D chromatin interaction map to delineate the genomic hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops. Then, the specific super-enhancers (SEs) related to psoriasis were identified by Hi-C and H3K27ac ChIP-seq data. Subsequently, comprehensive analyses were carried out on the differentially expressed genes that are associated with altered TADs, loops and SEs in psoriasis. Lastly, we screened the candidate target genes and examined the potential functional single nucleotide polymorphism in psoriasis affected by disruptions of the spatial organization. This paper provides a comprehensive reference for examining the 3D genome interactions in psoriasis and elucidating the interplay between spatial organization disruption and gene regulation. We hope our findings can help clarify the mechanisms underlying the pathogenesis of psoriasis and shed light on the role of 3D genomic structure, therefore informing potential therapeutic approaches.

7.
J Hazard Mater ; 479: 135602, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39191010

ABSTRACT

Freshwater rivers are hotspots of N2O greenhouse gas emissions. Dissolved organic carbon (DOC) is the dominant electron donor for microbial N2O reduction, which can reduce N2O emission through enriching high N2O affinity denitrifiers or enriching non-denitrifying N2O-reducing bacteria (N2ORB), but the primary regulatory pathway remains unclear. Here, field study indicated that high DOC concentration in rivers enhanced denitrification rate but reduced N2O flux by improving nosZ gene abundance. Then, four N2O-fed membrane aeration biofilm reactors inoculated with river sediments from river channel, estuary, adjacent lake, and a mixture were continuously performed for 360 days, including low, high, and mixed DOC stages. During enrichment stages, the (nirS+nirK)/nosZ ratio showed no significant difference, but the community structure of denitrifiers and N2ORB changed significantly (p < 0.05). In addition, N2ORB strains isolated from different enrichment stages positioned in different branches of the phylogenetic tree. N2ORB strains isolated during high DOC stage showed significant higher maximum N2O-reducing capability (Vmax: 0.6 ± 0.4 ×10-4 pmol h-1 cell-1) and N2O affinity (a0: 7.8 ± 7.7 ×10-12 L cell-1 h-1) than strains isolated during low (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.7 ± 0.4 ×10-12 L cell-1 h-1) and mixed DOC stages (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.9 ± 0.9 ×10-12 L cell-1 h-1) (p < 0.05). Hence, under high DOC concentration conditions, the primary factor in reducing N2O emissions in rivers is the enrichment of complete denitrifiers with high N2O affinity, rather than non-denitrifying N2ORB.

8.
ACS Appl Mater Interfaces ; 16(34): 44927-44937, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39152899

ABSTRACT

Carbon molecular sieve (CMS) membranes have emerged as attractive gas membranes due to their tunable pore structure and consequently high gas separation performances. In particular, polyimides (PIs) have been considered as promising CMS precursors because of their tunable structure, superior gas separation performance, and excellent thermal and mechanical strength. In the present work, polyphosphoric acid (PPA) was employed as both cross-linker and porogen, it created pores within the PI polymeric matrix, while it also effectively acting as a cross-linker to regulate the ultramicropores of the CMS membranes, thus simultaneously improving both permeability and selectivity of the CMS membranes. By employing PI/PPA hybrid with PPA content of 5 wt % as a precursor, the obtained CMS membrane exhibited a CO2 and He permeability of 1378.3 Barrer and 1431.4 Barrer, respectively, which was an approximately 10-fold increase compared to the precursor membrane. Under optimized conditions, the CO2/CH4 and He/CH4 selectivity of the obtained CMS membrane reached 81.5 and 89.9, respectively, which was 278% and 307% higher than that of the pristine PI membrane. In addition, the membrane exhibited good long-term stability during a one-week continuous test. This study clearly denoted PPA can be used for precisely tailoring the ultramicroporosity of CMS membranes.

9.
Curr Protoc ; 4(8): e1122, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166828

ABSTRACT

Breast cancer is a prevalent malignancy affecting women worldwide. Currently, there are no precise molecular biomarkers with immense potential for accurately predicting breast cancer development, which limits clinical management options. Recent evidence has highlighted the importance of metastatic and tumor-infiltrating immune cells in modulating the antitumor therapy response. However, the prognostic value of using these features in combination, and their potential for guiding individualized treatment for breast cancer, remains vague. To address this challenge, we recently developed the metastatic and immunogenomic risk score (MIRS), a comprehensive and user-friendly scoring system that leverages advanced bioinformatics methods to facilitate transcriptomics data analysis. To help users become familiar with the MIRS tool and apply it effectively in analyzing new breast cancer datasets, we describe detailed protocols that require no advanced programming skills. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Calculating a MIRS score from transcriptomics data Basic Protocol 2: Predicting clinical outcomes from MIRS scores Basic Protocol 3: Evaluating treatment responses and guiding therapeutic strategies in breast cancer patients Basic Protocol 4: Guidelines for utilizing the MIRS webtool.


Subject(s)
Breast Neoplasms , Neural Networks, Computer , Humans , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Female , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Profiling , Computational Biology/methods
10.
Int J Surg ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39166963

ABSTRACT

BACKGROUND: Hepatic arterial infusion chemotherapy (HAIC) has shown satisfactory therapeutic efficacy in unresectable hepatocellular carcinoma (HCC) and is regarded as an important conversion treatment. However, limited information is available regarding the optimal timing of HAIC-based conversion hepatectomy. This study aims to determine the optimal timing for HAIC-based conversion surgery in patients with HCC. METHODS: Data from a retrospective cohort of patients who underwent HAIC-based conversion hepatectomy were reviewed. Oncological outcomes, surgical information, and risk factors were comparatively analyzed. RESULTS: In total, 424 patients with HCC who underwent HAIC-based conversion hepatectomy were included and were divided into responder (n=312) and nonresponder (n=112) groups. The overall survival (OS) and recurrence-free survival (RFS) rates of both the whole responder cohort and patients who achieved a response after 4-6 cycles of HAIC were significantly better than those of the nonresponder cohort. Higher OS and RFS were observed in responders than in nonresponders with advanced-stage HCC. Patients in the responder group had a shorter occlusion duration and less intraoperative blood loss than those in the nonresponder group. There were no significant differences in other surgical information or postoperative complications between the two groups. Tumor response, differentiation, postoperative alpha-fetoprotein level, postoperative protein induced by vitamin K absence or antagonist-II level, age, microvascular invasion, pre-HAIC neutrophil-to-lymphocyte ratio, and preoperative systemic inflammatory response index were independent risk factors for poor long-term survival. CONCLUSIONS: Conversion surgery should be considered when tumor response is achieved. Our findings may be useful in guiding surgeons and patients in decision-making regarding HAIC-based conversion hepatectomy.

11.
Talanta ; 279: 126635, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39089082

ABSTRACT

Heightened oxidative stress is the principal driver behind the altered metabolism of neurotransmitters within the brains of Parkinson's disease (PD). Hypochlorous acid (HClO), a variant of reactive oxygen species (ROS), plays a crucial role in several lysosomal activities. An irregular concentration of HClO may result in significant molecular damage and contribute to the onset of neurodegenerative disorders. Despite this, the precise role of lysosomal HClO in PD remains unclear, due to its fast reactivity and low levels. This is further complicated by the lack of effective in situ imaging techniques for accurately tracking its dynamics. Therefore, it is of great significance to use effective tools to map the lysosomal HClO during the pathological process of PD. In this study, we propose a fluorogenic probe named Lys-PTZ-HClO for the specific and sensitive detection of HClO. Lys-PTZ-HClO exhibits features like a fast response time (10 s) and a low detection limit (0.72 µM). Benefiting from its superior properties, the probe was used to visualize the basal HClO levels, and the variation of HClO levels in lysosomal of living cells. More importantly, this probe was successfully applied for the first time to reveal increased lysosomal HClO in a cellular model of PD.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Lysosomes , Parkinson Disease , Hypochlorous Acid/analysis , Hypochlorous Acid/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Lysosomes/chemistry , Lysosomes/metabolism , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/pathology , Optical Imaging
12.
Sci China Life Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38987431

ABSTRACT

Winter plants rely on vernalization, a crucial process for adapting to cold conditions and ensuring successful reproduction. However, understanding the role of histone modifications in guiding the vernalization process in winter wheat remains limited. In this study, we investigated the transcriptome and chromatin dynamics in the shoot apex throughout the life cycle of winter wheat in the field. Two core histone modifications, H3K27me3 and H3K36me3, exhibited opposite patterns on the key vernalization gene VERNALIZATION1 (VRN1), correlating with its induction during cold exposure. Moreover, the H3K36me3 level remained high at VRN1 after cold exposure, which may maintain its active state. Mutations in FERTILIZATION-INDEPENDENT ENDOSPERM (TaFIE) and SET DOMAIN GROUP 8/EARLY FLOWERING IN SHORT DAYS (TaSDG8/TaEFS), components of the writer complex for H3K27me3 and H3K36me3, respectively, affected flowering time. Intriguingly, VRN1 lost its high expression after the cold exposure memory in the absence of H3K36me3. During embryo development, VRN1 was silenced with the removal of active histone modifications in both winter and spring wheat, with selective restoration of H3K27me3 in winter wheat. The mutant of Tafie-cr-87, a component of H3K27me3 "writer" complex, did not influence the silence of VRN1 during embryo development, but rather attenuated the cold exposure requirement of winter wheat. Integrating gene expression with H3K27me3 and H3K36me3 patterns identified potential regulators of flowering. This study unveils distinct roles of H3K27me3 and H3K36me3 in controlling vernalization response, maintenance, and resetting in winter wheat.

14.
Materials (Basel) ; 17(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998223

ABSTRACT

In the laboratory study of alkali-silica reaction (ASR), models attempt to predict the service life of concrete due to ASR by correlating the performance of concrete at high and low temperatures. However, the consequences of elevating temperature are not so encouraging. In this paper, the influence of temperature on the expansion of 2-graded concrete and 3-graded concrete caused by ASR was investigated by curing the concrete under different temperatures ranging from 40 °C to 80 °C. Increased temperature resulted in rapid expansion at the early stages, but the expansion rate of concrete prisms cured at the higher temperatures (70 °C and 80 °C) was slowed down at the later stages, and concrete prisms cured at 50 °C or 60 °C showed the highest expansions during the experimental period. The chemical analysis results of the pore solution expressed from the concrete show that the ASR expansion is significantly influenced by the [OH-]: the decrease in [OH-] leads to the retardation of the ASR expansion. The decrease in [OH-] is attributed to the consumption of OH- ions for the alkali-silica reaction and the decrease in activity of NaOH(aq) influenced by the temperature. For large cross-section specimens, the OH- within the concrete for alkali-silica reactions cannot be effectively compensated by the external alkali solution. In the accelerated test to evaluate ASR for large cross-section specimens, a curing temperature of less than 60 °C is suggested. This study provides critical insights into the temperature dependency of ASR expansion of concrete, offering a curing temperature range for developing predictive models of ASR expansion under varied environmental conditions.

15.
Front Oncol ; 14: 1392213, 2024.
Article in English | MEDLINE | ID: mdl-39070140

ABSTRACT

Background: Through preoperative localization, surgeons can easily locate ground glass nodules (GGNs) and effectively control the extent of resection. Therefore, it is necessary to choose an appropriate puncture positioning method. The purpose of this study was to evaluate the effectiveness and safety of medical glue and positioning hooks in the preoperative positioning of GGNs and to provide a reference for clinical selection. Methods: From March 30, 2020 to June 13, 2022, a total of 859 patients with a CT diagnosis of GGNs requiring surgical resection were included in our study at the hospital. Among them, 21 patients who either opted out or could not undergo preoperative localization for various reasons were excluded. Additionally, 475 patients who underwent preoperative localization using medical glue and 363 patients who underwent preoperative localization through positioning hooks were also excluded. We conducted statistical analyses on the baseline data, success rates, complications, and pathological results of the remaining patients. The success rates, complication rates, and pathological results were compared between the two groups-those who received medical glue localization and those who received positioning hook localization. Results: There was no statistically significant difference between the two groups of patients in terms of age, body mass index, smoking history, location of the nodule, distance of the nodule from the pleura, or postoperative pathological results (P > 0.05). The success rate of medical glue and positioning hooks was 100%. The complication rates of medical glue and positioning hooks during single nodule positioning were 39.18% and 23.18%, respectively, which were significantly different (p < 0.001); the complication rates during multiple nodule positioning were 49.15% and 49.18%, respectively, with no statistically significant differences (p > 0.05). In addition, the method of positioning and the clinical characteristics of the patients were not found to be independent risk factors for the occurrence of complications. The detection rate of pulmonary nodules also showed some positive correlation with the spread of COVID-19 during the 2020-2022 period when COVID-19 was prevalent. Conclusion: When positioning a single node, the safety of positioning hooks is greater than when positioning multiple nodes, the safety of medical glue and positioning hooks is comparable, and the appropriate positioning method should be chosen according to the individual situation of the patient.

16.
Materials (Basel) ; 17(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39063708

ABSTRACT

In this paper, the effect of waste rock-wool dosage on the workability, mechanical strength, abrasion resistance, toughness and hydration products of PVA and steel fiber-reinforced mortars was investigated. The results showed that the fluidity of the mortar gradually decreased with the increase in the dosage of waste rock wool, with a maximum reduction of 10% at a dosage of 20%. The higher the dosage of waste rock wool, the greater the reduction in compressive strength. The effect of waste rock wool on strength reduction decreases with increasing age. When the dosage of waste rock wool was 10%, the 28 days of flexural and compressive strengths were reduced by 4.73% and 10.59%, respectively. As the dosage of waste rock wool increased, the flexural-to-compressive ratio increased, and at 20%, the maximum value of 28 days of flexural-to-compressive ratio was 0.210, which was increased by 28.05%. At a 5% dosage, the abraded volume was reduced from 500 mm3 to 376 mm3-a reduction of 24.8%. Waste rock wool only affects the hydration process and does not cause a change in the type of hydration products. It promotes the hydration of the cementitious material system at low dosages and exhibits an inhibitory effect at high dosages.

17.
Materials (Basel) ; 17(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063893

ABSTRACT

With the increasing depletion of high-quality raw materials, siliceous limestone, sandstone and other hard-to-burn raw materials containing crystalline SiO2 are gradually being used to produce clinker. This study investigates the influence of the quartz content and particle size in siliceous limestone on the calcination process and the resultant quality of cement clinker. Two different siliceous limestones were grinded to different fineness, and calcinated with some other materials. The content of the clinkers was analyzed with the XRD-Rietveld method and the microstructure of the clinkers was observed with laser scanning confocal microscopy (LSCM) and field emission scanning electron microscopy (FESEM). Three key outcomes of this study provide new insights on the use of siliceous limestone in cement production, namely that (i) reducing the fineness values of siliceous limestone from 15% to 0% of residue on a 0.08 mm sieve decreases the quantity of these larger quartz particles, resulting in an increase in C3S content by up to 8% and an increase in 28d compressive strength by up to 4.4 Mpa, which is 62.30 Mpa; (ii) the morphology of quartz-either as chert nodules or single crystals-affects the microstructure of C2S clusters in clinker, finding that chert nodules result in clusters with more intermediate phases, whereas large single crystals lead to denser clusters; (iii) the sufficient fineness values of siliceous limestone SL1 and SL2 are 5% and 7% of residue on a 0.08 mm sieve, respectively, which can produce a clinker with a 28d compressive strength greater than 60 Mpa, indicating that for different kinds of quartz in siliceous limestone, there is an optimum grinding solution that can achieve a balance between clinker quality and energy consumption without having to grind siliceous limestone to very fine grades.

18.
Virology ; 597: 110142, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959723

ABSTRACT

OBJECTIVES: The specific humoral immune response resulting from inactivated vaccination following by BA.5 infection, and predictors of XBB variants re-infection in BA.5 infection-recovered nasopharyngeal carcinoma (BA.5-RNPC) patients, were explored. METHODS: Serum SARS-CoV-2 specific antibody levels were assessed using enzyme-linked-immunosorbent-assay. Univariate and multivariate binary logistic regression analyses were conducted to identify factors associated with the magnitude of specific humoral immunity and susceptibility to re-infection by XBB variants. RESULTS: Our data demonstrates that SARS-CoV-2 specific antibody levels were comparable between BA.5-RNPC patients and BA.5 infection-recovered-non-cancerous (BA.5-RNC) individuals. Specifically, serum levels of anti-ancestral-S1-IgG, anti-ancestral-nucleocapsid-protein (NP)-IgG, anti-BA.5-receptor binding domain (RBD)-IgG and anti-XBB.1.1.6-RBD-IgG were higher in BA.5-RNPC patients compared to those without a prior infection. Compared to BA.5-RNPC patients without vaccination, individuals who received inactivated vaccination exhibited significantly higher levels of anti-ancestral-S1-IgG and anti-XBB.1.16-RBD-IgG. Multivariate logistic regression analysis revealed that inactivated vaccination was the most significant predictor of all tested SARS-CoV-2 specific antibodies response. Subsequent analysis indicated that a low globulin level is an independent risk factor for XBB re-infection in BA.5-RNPC patients. CONCLUSIONS: The SARS-CoV-2 specific antibodies have been improved in vaccinated BA.5-RNPC patients. However, the baseline immunity status biomarker IgG is an indicators of XBB variant re-infection risk in BA.5-RNPC patients.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Reinfection , SARS-CoV-2 , Humans , Male , Female , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Middle Aged , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Risk Factors , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , Reinfection/immunology , Reinfection/virology , Adult , Immunoglobulin G/blood , Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Humoral , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
19.
Talanta ; 278: 126506, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38968659

ABSTRACT

Diabetes, as a metabolic disorder, has been implicated in organ dysfunction, often correlated with aberrant changes in viscosity. Lysosomal viscosity serves as an indicator of the lysosome's condition and activity, as it always varies synchronously with the change of lysosome's positioning, structure, and internal constituents. Diabetes, a condition within the metabolic disease category, has the potential to disrupt organ function due to irregular changes in viscosity. Therefore, early and precise diagnosis of diabetes is crucial for the prevention and management of diabetic conditions. Understanding the correlation between viscosity variations and lysosomal changes in vivo is vitally important for researching associated diseases. In this study, we developed Lyso-V, a near-infrared (NIR) fluorescent probe targeting lysosomes, with ultrasensitivity to viscosity changes. This probe, designed with a donor-π-bridge-acceptor (D-π-A) structure, exhibits a significant increase in NIR fluorescence intensity (approximately 690 times) when responding to viscosity, due to a twisted intramolecular charge transfer (TICT) mechanism. Furthermore, the probe designed specifically for lysosomes, enables the detection of changes in lysosomal viscosity as well as autophagy processes. Notably, through the application of this probe, we have detected an increased viscosity within the pathological model of the diabetic mouse. Moreover, Lyso-V was employed to measure the viscosity in diabetic mice. Owing to the multifaceted nature of the Lyso-V probe, it is anticipated to act as a practical and potent resource for deepening our understanding of the pathophysiological aspects of diabetes and aiding in its early detection.


Subject(s)
Diabetes Mellitus, Experimental , Fluorescent Dyes , Lysosomes , Lysosomes/chemistry , Lysosomes/metabolism , Animals , Fluorescent Dyes/chemistry , Viscosity , Mice , Humans , Male , Infrared Rays , Optical Imaging
20.
Materials (Basel) ; 17(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930240

ABSTRACT

In order to further optimize the performance of PMMA (Polymethyl Methacrylate) repair mortar. In this paper, fly ash, talcum powder and wollastonite powder are used as fillers to modify the PMMA repair mortar. The effects of these three fillers on the working performance, mechanical performance and durability of PMMA repair mortar were explored. The study shows that the three fillers have good effect on the bond strength of the repair mortar, in which the fly ash has the best effect on the mechanical performance. The mechanical properties of PMMA repair mortar were best when the amount of fly ash was 60 phr (parts per hundred, representing the amount of the material added per hundred parts of PMMA). At this time, the 28 d compressive strength was 71.26 MPa and the 28 d flexural strength was 28.09 MPa, which increased by 13.31% and 15.33%, respectively. Wollastonite powder had the least negative effect on the setting time of the PMMA repair mortar. When the dosage of wollastonite powder was increased to 100 phr, the setting time was only extended from 65 min to 94 min. When the talc dosage was 60 phr, the best improvement in salt freezing resistance was achieved. After 100 cycles of salt freezing, the mass loss rate and strength loss rate decreased to 0.159% and 4.97%, respectively, which were 75.1% and 37.7% higher than that of the control group. The addition of all three fillers reduced the porosity and the proportion of harmful pores in the mortar. This study contributes to a comprehensive understanding how different types of fillers affect PMMA repair mortars, and it also provides theoretical support for the further development of low-temperature rapid repair mortars.

SELECTION OF CITATIONS
SEARCH DETAIL