Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(9): 14495-14508, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157313

ABSTRACT

Passive power generation has recently stimulated interest in thermoelectric generators (TEGs) using the radiative cooling mechanism. However, the limited and unstable temperature difference across the TEGs significantly degrades the output performance. In this study, an ultra-broadband solar absorber with a planar film structure is introduced as the hot side of the TEG to increase the temperature difference by utilizing solar heating. This device not only enhances the generation of electrical power but also realizes all-day uninterrupted electrical output due to the stable temperature difference between the cold and hot sides of the TEG. Outdoor experiments show the self-powered TEG obtains maximum temperature differences of 12.67 °C, 1.06 °C, and 5.08 °C during sunny daytime, clear nighttime, and cloudy daytime, respectively, and generates output voltages of 166.2 mV, 14.7 mV, and 95 mV, respectively. Simultaneously, the corresponding output powers of 879.25 mW/m2, 3.85 mW/m2, and 287.27 mW/m2 are produced, achieving 24-hour uninterrupted passive power generation. These findings propose a novel strategy to combine solar heating and outer space cooling by a selective absorber/emitter to generate all-day continuous electricity for unsupervised small devices.

2.
Opt Express ; 28(16): 23748-23760, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752367

ABSTRACT

In this study, we designed a novel ultra-wideband (UWB) absorber and numerically analyzed it to demonstrate that its light absorptivity was greater than 90% in the wavelength range of visible light and near-infrared (405-1505 nm). The structure of proposed novel UWB absorber consisted of four layers of films, including silica, titanium, magnesium fluoride, and aluminium, and the upper silica and titanium layers had rectangular cubes in them. For that, the excitations of propagating surface plasmon resonance (PSPR), local surface plasmon resonance (LSPR), and the resonance of Fabry-Perot (FP) cavity were generated at the same time and combined to reach the effect of perfect absorption and ultra-wideband. The proposed absorber had an average absorptivity of 95.14% in the wavelength range of 405 ∼ 1505 nm when the light was under normal incidence. In addition, the UWB absorber was large incident angle insensitive and polarization-independent. The absorber proposed in the paper had great prospects in the fields of thermal electronic equipment, solar power generation, and perfect cloaking.

3.
Environ Sci Technol ; 50(22): 12373-12384, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27718556

ABSTRACT

We report an in situ high-pressure NMR capability that permits natural abundance 17O and 25Mg NMR characterization of dissolved species in aqueous solution and in the presence of supercritical CO2 fluid (scCO2). The dissolution of Mg(OH)2 (brucite) in a multiphase water/scCO2 fluid at 90 atm pressure and 50 °C was studied in situ, with relevance to geological carbon sequestration. 17O NMR spectra allowed identification and distinction of various fluid species including dissolved CO2 in the H2O-rich phase, scCO2, aqueous H2O, and HCO3-. The widely separated spectral peaks for various species can all be observed both dynamically and quantitatively at concentrations as low as 20 mM. Measurement of the concentrations of these individual species also allows an in situ estimate of the hydrogen ion concentration, or pCH+ values, of the reacting solutions. The concentration of Mg2+ can be observed by natural abundance 25Mg NMR at a concentration as low as 10 mM. Quantum chemistry calculations of the NMR chemical shifts on cluster models aided in the interpretation of the experimental results. Evidence for the formation of polymeric Mg2+ clusters at high concentrations in the H2O-rich phase, a possible critical step needed for magnesium carbonate formation, was found.


Subject(s)
Carbon Dioxide/chemistry , Water , Carbon Sequestration , Magnetic Resonance Spectroscopy , Solubility , Water/chemistry
4.
Nano Lett ; 15(5): 3309-16, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25785550

ABSTRACT

A fundamental understanding of electrochemical reaction pathways is critical to improving the performance of Li-S batteries, but few techniques can be used to directly identify and quantify the reaction species during disharge/charge cycling processes in real time. Here, an in situ (7)Li NMR technique employing a specially designed cylindrical microbattery was used to probe the transient electrochemical and chemical reactions occurring during the cycling of a Li-S system. In situ NMR provides real time, semiquantitative information related to the temporal evolution of lithium polysulfide allotropes during both discharge/charge processes. This technique uniquely reveals that the polysulfide redox reactions involve charged free radicals as intermediate species that are difficult to detect in ex situ NMR studies. Additionally, it also uncovers vital information about the (7)Li chemical environments during the electrochemical and parasitic reactions on the Li metal anode. These new molecular-level insights about transient species and the associated anode failure mechanism are crucial to delineating effective strategies to accelerate the development of Li-S battery technologies.

5.
J Am Chem Soc ; 137(7): 2600-7, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25646600

ABSTRACT

Lithium alloys of group IV elements such as silicon and germanium are attractive candidates for use as anodes in high-energy-density lithium-ion batteries. However, the poor capacity retention arising from volume swing during lithium cycling restricts their widespread application. Herein, we report high reversible capacity and superior rate capability from core-shell structure consisting of germanium nanorods embedded in multiwall carbon nanotubes. To understand how the core-shell structure helps to mitigate volume swings and buffer against mechanical instability, transmission electron microscopy, X-ray diffraction, and in situ (7)Li nuclear magnetic resonance were used to probe the structural rearrangements and phase evolution of various Li-Ge alloy phases during (de)alloying reactions with lithium. The results provide insights into amorphous-to-crystalline transition and lithium germanide alloy phase transformation, which are important reactions controlling performance in this system.

6.
Chem Commun (Camb) ; 51(12): 2312-5, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25562393

ABSTRACT

The long sought solvated [MgCl](+) species in the Mg-dimer electrolytes was characterized by soft mass spectrometry. The presented study provides an insightful understanding on the electrolyte chemistry of rechargeable Mg batteries.


Subject(s)
Coordination Complexes/chemistry , Electrolytes/chemistry , Magnesium/chemistry , Coordination Complexes/chemical synthesis , Dimerization , Electric Power Supplies , Lewis Acids/chemistry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL