Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Front Immunol ; 15: 1431303, 2024.
Article in English | MEDLINE | ID: mdl-39267736

ABSTRACT

The role of Erythroid cells in immune regulation and immunosuppression is one of the emerging topics in modern immunology that still requires further clarification as Erythroid cells from different tissues and different species express different immunoregulatory molecules. In this study, we performed a thorough investigation of human bone marrow Erythroid cells from adult healthy donors and adult acute lymphoblastic leukemia patients using the state-of-the-art single-cell targeted proteomics and transcriptomics via BD Rhapsody and cancer-related gene copy number variation analysis via NanoString Sprint Profiler. We found that human bone marrow Erythroid cells express the ARG1, LGALS1, LGALS3, LGALS9, and C10orf54 (VISTA) immunosuppressive genes, CXCL5, CXCL8, and VEGFA cytokine genes, as well as the genes involved in antimicrobial immunity and MHC Class II antigen presentation. We also found that ARG1 gene expression was restricted to the single erythroid cell cluster that we termed ARG1-positive Orthochromatic erythroblasts and that late Erythroid cells lose S100A9 and gain MZB1 gene expression in case of acute lymphoblastic leukemia. These findings show that steady-state erythropoiesis bone marrow Erythroid cells express myeloid signature genes even without any transdifferentiating stimulus like cancer.


Subject(s)
Erythroid Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Single-Cell Analysis , Humans , Erythroid Cells/metabolism , Erythroid Cells/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Differentiation/immunology , Proteomics/methods , Transcriptome , Gene Expression Profiling , Adult , Multiomics
2.
Oncol Res ; 32(10): 1575-1587, 2024.
Article in English | MEDLINE | ID: mdl-39308517

ABSTRACT

Background: Immune checkpoint ligand-receptor interactions appear to be associated with multiple myeloma (MM) progression. Simultaneously, previous studies showed the possibility of PD-1 and TIM-3 expression on T cells upon stimulation with common γ-chain family cytokines in vitro and during homeostatic proliferation. The aim of the present work was to study the impact of homeostatic proliferation on the expansion of certain T cell subsets up-regulating PD-1 and TIM-3 checkpoint molecules. Methods: The expression of CD25, CD122, CD127 common γ-chain cytokine receptors, phosphorylated signal transducer and activator of transcription-5 (pSTAT5) and eomesodermin (EOMES) was comparatively assessed with flow cytometry in PD-1- and TIM-3-negative and positive T cells before the conditioning and during the first post-transplant month in peripheral blood samples of MM patients. Results: Substantial proportions of PD-1- and TIM-3-positive T lymphocytes expressed common γ-chain cytokine receptors and pSTAT5. Frequencies of cytokine receptor expressing cells were significantly higher within TIM-3+ T cells compared to PD-1+TIM-3- subsets. Considerable proportions of both PD-1-/TIM-3-negative and positive CD8+ T cells express EOMES, while only moderate frequencies of CD4+ PD-1+/TIM-3+ T cells up-regulate this transcription factor. Besides, the surface presence of CD25 and intranuclear expression of EOMES in CD4+ T cells were mutually exclusive regardless of PD-1 and TIM-3 expression. The stimulation with common γ-chain cytokines up-regulates PD-1 and TIM-3 during the proliferation of initially PD-1/TIM-3-negative T cells but fails to expand initially PD-1+ and TIM-3+ T cell subsets in vitro. Conclusions: Both PD-1 and TIM-3 expressing T cells appear to be able to respond to homeostatic cytokine stimulation. Differences in common γ-chain cytokine receptor expression between PD-1+ and TIM-3+ T cells may reflect functional dissimilarity of these cell subsets. Checkpoint blockade appears to alleviate lymphopenia-induced proliferation of PD-1+ T cells but may raise the possibility of immune-mediated adverse events.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Multiple Myeloma , Programmed Cell Death 1 Receptor , Humans , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Hepatitis A Virus Cellular Receptor 2/metabolism , Programmed Cell Death 1 Receptor/metabolism , Middle Aged , Male , Female , Aged , Interleukin-7/metabolism , Interleukin-15/pharmacology , Interleukin-15/metabolism , Up-Regulation , Adult , Receptors, Cytokine/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
3.
PLoS One ; 19(7): e0305816, 2024.
Article in English | MEDLINE | ID: mdl-39038020

ABSTRACT

Erythroid cells, serving as progenitors and precursors to erythrocytes responsible for oxygen transport, were shown to exhibit an immunosuppressive and immunoregulatory phenotype. Previous investigations from our research group have revealed an antimicrobial gene expression profile within murine bone marrow erythroid cells which suggested a role for erythroid cells in innate immunity. In the present study, we focused on elucidating the characteristics of human bone marrow erythroid cells through comprehensive analyses, including NanoString gene expression profiling utilizing the Immune Response V2 panel, a BioPlex examination of chemokine and TGF-beta family proteins secretion, and analysis of publicly available single-cell RNA-seq data. Our findings demonstrate that an erythroid cell subpopulation manifests a myeloid-like gene expression signature comprised of antibacterial immunity and neutrophil chemotaxis genes which suggests an involvement of human erythroid cells in the innate immunity. Furthermore, we found that human erythroid cells secreted CCL22, CCL24, CXCL5, CXCL8, and MIF chemokines. The ability of human erythroid cells to express these chemokines might facilitate the restriction of immune cells in the bone marrow under normal conditions or contribute to the ability of erythroid cells to induce local immunosuppression by recruiting immune cells in their immediate vicinity in case of extramedullary hematopoiesis.


Subject(s)
Erythroid Cells , Monocytes , Humans , Monocytes/metabolism , Monocytes/cytology , Monocytes/immunology , Erythroid Cells/metabolism , Erythroid Cells/cytology , Immunity, Innate , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Transcriptome , Gene Expression Profiling , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Myeloid Cells/metabolism , Chemokines/metabolism , Chemokines/genetics , Interleukin-8 , Intramolecular Oxidoreductases
4.
Heliyon ; 10(5): e26362, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434301

ABSTRACT

Recent studies demonstrated that myeloid-derived suppressor cells (MDSCs) are involved in the pathogenesis and progression of multiple myeloma (MM). Nevertheless, data on the quantitative and functional changes in MDSCs during standard MM treatment remain poorly understood. Here, we determined that monocytic MDSCs (M-MDSC; CD14+HLA-DRlow/-) and granulocytic MDSCs (PMN-MDSC; Lin-HLA-DR-CD33+CD66b+) in MM patients in remission following induction therapy (IT) were significantly increased, while early MDSCs (E-MDSCs; Lin-HLA-DR-CD33+CD66b-) were decreased compared to the donor group. In progression, MM patients had the most pronounced decrease in E-MDSCs and enhanced levels of PMN-MDSCs. IT was accompanied with a decrease in the expression of arginase-1 (Arg-1). In MM patients with relapse or resistance to IT, Arg-1+ cell frequency in M-MDSCs and E-MDSCs, as well as PD-L1+ M-MDSCs, was increased, which may facilitate tumor immunosuppression. G-CSF administration led to a significant increment in the MDSC subsets. At the engraftment, circulating M-MDSC and PMN-MDSCs were temporarily increased, with a gradual decline to the pre-transplant levels in 12 months. The percentage of E-MDSCs was decreased at the leukocyte recovery. Patients with a higher (>Me) M-MDSC count at the engraftment had a shorter post-transplant leukopenia duration (Me 11 vs. 13 days; pU = 0.0086). The advanced MM stage, depth of response, and lower relative count of circulating E-MDSCs at the engraftment were independent risk factors associated with a lower progression-free survival. The obtained data allow us to hypothesize that MDSCs may play a positive role at the stage of leukocyte recovery by ameliorating the long-term anti-tumor response in MM.

5.
PLoS One ; 18(6): e0287793, 2023.
Article in English | MEDLINE | ID: mdl-37390055

ABSTRACT

CD 71+ erythroid nucleated cells have pronounced immunoregulatory properties in normal and pathological conditions. Many populations of cells with immunoregulatory properties are considered candidates for cellular immunotherapy for various pathologies. This study characterized the immunoregulatory properties of CD71+ erythroid cells derived from CD34-positive bone marrow cells under the influence of growth factors that stimulate differentiation into erythroid cells. CD34-negative bone marrow cells were used to isolate CD71+ erythroid nuclear cells. The resulting cells were used to assess the phenotype, determine the mRNA spectrum of the genes responsible for the main pathways and processes of the immune response, and obtain culture supernatants for the analysis of immunoregulatory factors. It was found that CD71+ erythroid cells derived from CD34+ cells carry the main markers of erythroid cells, but differ markedly from natural bone marrow CD71+ erythroid cells. The main differences are in the presence of the CD45+ subpopulation, distribution of terminal differentiation stages, transcriptional profile, secretion of certain cytokines, and immunosuppressive activity. The properties of induced CD71+ erythroid cells are closer to the cells of extramedullary erythropoiesis foci than to natural bone marrow CD71+ erythroid cells. Thus, when cultivating CD71+ erythroid cells for clinical experimental studies, it is necessary to take into account their pronounced immunoregulatory activity.


Subject(s)
Bone Marrow , Erythroid Cells , Antigens, CD34 , Bone Marrow Cells , Cell Adhesion Molecules
6.
Cells ; 11(22)2022 11 09.
Article in English | MEDLINE | ID: mdl-36428967

ABSTRACT

Nucleated erythroid cells (NECs) are the precursors of erythrocytes. They can be found in various hematopoietic tissues or in the blood. Recently, they have been shown to be active players in immunosuppression through the synthesis of arginase-2 and reactive oxygen species. In this work, we studied NECs in adult bone marrow, umbilical cord blood, and foetal liver parenchyma using single-cell RNA sequencing and found that: (1) all studied NECs expressed the same set of genes, which was enriched in "GO biological process" immunity-related terms; (2) early and late NECs had differential expression of the genes associated with immunosuppression, cell cycle progression, apoptosis, and glycolysis; (3) NECs from different tissues of origin had differential expression of the genes associated with immunosuppression.


Subject(s)
Erythrocytes , Transcriptome , Adult , Humans , Transcriptome/genetics , Cell Count , Erythrocytes/metabolism , Fetal Blood , RNA/genetics , RNA/metabolism
7.
Genes (Basel) ; 13(8)2022 07 26.
Article in English | MEDLINE | ID: mdl-35893070

ABSTRACT

CD71+ erythroid cells (CECs) were only known as erythrocyte progenitors not so long ago. In present times, however, they have been shown to be active players in immune regulation, especially in immunosuppression by the means of ROS, arginase-1 and arginase-2 production. Here, we uncover organ-of-origin differences in cytokine gene expression using NanoString and protein production using Bio-Plex between CECs from healthy human adult bone marrow and from human fetal liver parenchyma. Namely, healthy human adult bone marrow CECs both expressed and produced IFN-a, IL-1b, IL-8, IL-18 and MIF mRNA and protein, while human fetal liver parenchymaCECs expressed and produced IFN-a, IL15, IL18 and TNF-b mRNA and protein. We also detected TLR2 and TLR9 gene expression in both varieties of CECs and TLR1 and NOD2 gene expression in human fetal liver parenchymaCECs only. These observations suggest that there might be undiscovered roles in immune response for CECs.


Subject(s)
Arginase , Bone Marrow , Adult , Erythroid Cells , Humans , Liver , RNA, Messenger , Secretome , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL