Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Immunol ; 44(7): 166, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060684

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is a rare genetic disorder featuring chronic lymphadenopathy, splenomegaly, cytopenias, and increased lymphoma risk. Differentiating ALPS from immunodeficiencies with overlapping symptoms is challenging. This study evaluated the performance and the diagnostic yield of a 15-gene NGS panel for ALPS at Cincinnati Children's Hospital Medical Center. Samples from 802 patients submitted for ALPS NGS panel were studied between May 2014 and January 2023. A total of 62 patients (7.7%) had a definite diagnosis: 52/62 cases (84%) showed 37 unique pathogenic/likely pathogenic germline FAS variants supporting ALPS diagnosis (6.5%, 52/802). The ALPS diagnostic yield increased to 30% in patients who additionally fulfilled abnormal ALPS immunology findings criteria. 17/37 (46%) diagnostic FAS variants were novel variants reported for the first time in ALPS. 10/802 cases (1.2%) showed diagnostic findings in five genes (ADA2, CTLA4, KRAS, MAGT1, NRAS) which are related to autoimmune lymphoproliferative immunodeficiency (ALPID). Family studies enabled the reclassification of variants of unknown significance (VUS) and also the identification of at-risk family members of FAS-positive patients, which helped in the follow-up diagnosis and treatment. Alongside family studies, complete clinical phenotypes and abnormal ALPS immunology and Fas-mediated apoptosis results helped clarify uncertain genetic findings. This study describes the largest cohort of genetic testing for suspected ALPS in North America and highlights the effectiveness of the ALPS NGS panel in distinguishing ALPS from non-ALPS immunodeficiencies. More comprehensive assessment from exome or genome sequencing could be considered for undefined ALPS-U patients or non-ALPS immunodeficiencies after weighing cost, completeness, and timeliness of different genetic testing options.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Genetic Testing , Humans , Autoimmune Lymphoproliferative Syndrome/diagnosis , Autoimmune Lymphoproliferative Syndrome/genetics , Genetic Testing/methods , Female , Male , Child , Child, Preschool , Infant , Adolescent , fas Receptor/genetics , High-Throughput Nucleotide Sequencing , Genetic Predisposition to Disease , Hospitals, Pediatric , Mutation/genetics
2.
Hum Mutat ; 39(3): 389-393, 2018 03.
Article in English | MEDLINE | ID: mdl-29288557

ABSTRACT

Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD.


Subject(s)
Alu Elements/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Mutagenesis, Insertional , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/genetics , Ankyrins/genetics , Base Sequence , Exons/genetics , Female , Humans , Infant , Male , Middle East , Pyruvate Kinase/genetics
3.
PLoS Comput Biol ; 10(12): e1003998, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474019

ABSTRACT

Current sequencing methods produce large amounts of data, but genome assemblies based on these data are often woefully incomplete. These incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. In this paper we investigate the magnitude of the problem, both in terms of total gene number and the number of copies of genes in specific families. To do this, we compare multiple draft assemblies against higher-quality versions of the same genomes, using several new assemblies of the chicken genome based on both traditional and next-generation sequencing technologies, as well as published draft assemblies of chimpanzee. We find that upwards of 40% of all gene families are inferred to have the wrong number of genes in draft assemblies, and that these incorrect assemblies both add and subtract genes. Using simulated genome assemblies of Drosophila melanogaster, we find that the major cause of increased gene numbers in draft genomes is the fragmentation of genes onto multiple individual contigs. Finally, we demonstrate the usefulness of RNA-Seq in improving the gene annotation of draft assemblies, largely by connecting genes that have been fragmented in the assembly process.


Subject(s)
Genome/genetics , Genomics/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Animals , Chickens/genetics , Chromosome Mapping , Drosophila melanogaster/genetics , Pan troglodytes/genetics
4.
J Strength Cond Res ; 20(3): 528-34, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16937965

ABSTRACT

The purpose of this study was to investigate and compare the acute kinematic, kinetic, and blood lactate responses to continuous and intraset rest loading schemes that differed in terms of rest frequency but not total rest duration. Nine male subjects performed an isoinertial bench press task (6 repetition maximum load) with a continuous, an intraset rest equated by total rest time, volume, and load (ISRV), and an intraset rest equated by total rest time and load (ISRR) loading scheme. The scheme order was assigned in a block-randomized order with a minimum of 48 hours of recovery between testing sessions. Attached to the bar of the Smith machine was a linear position transducer that measured vertical displacement with an accuracy of 0.01 cm. Displacement data was sampled at 1,000 Hz and collected by a laptop computer running custom-built data acquisition software. Finger prick blood lactate samples were taken from the nondominant hand before exercise, immediately after exercise, and 5, 15 and 30 minutes after exercise. Blood glucose samples were taken before exercise only. It was observed that manipulating the rest period, by increasing the frequency but decreasing the length of each rest period, did not significantly influence the kinematics and kinetics associated with resistance training, but did have an effect on the postexercise blood lactate response when the load, rest duration, and training volume were equated (ISRV). This finding may be of practical significance if fatigue is important in strength development or conversely if power training requires minimal fatigue. It was also observed that increasing the frequency of the rest period enabled the subjects to perform a greater number of repetitions (ISRR), resulting in significantly greater kinematics, kinetics, and blood lactate accumulation.


Subject(s)
Lactic Acid/blood , Physical Education and Training/methods , Rest/physiology , Weight Lifting/physiology , Adult , Biomechanical Phenomena , Cross-Over Studies , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL