Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Antibiotics (Basel) ; 11(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290101

ABSTRACT

Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-ß-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.

2.
Microbiol Spectr ; 10(5): e0124222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36094181

ABSTRACT

Guadeloupe (French West Indies), a Caribbean island, is an ideal place to study the reservoirs of the Klebsiella pneumoniae species complex (KpSC) and identify the routes of transmission between human and nonhuman sources due to its insularity, small population size, and small area. Here, we report an analysis of 590 biological samples, 546 KpSC isolates, and 331 genome sequences collected between January 2018 and May 2019. The KpSC appears to be common whatever the source. Extended-spectrum-ß-lactamase (ESBL)-producing isolates (21.4%) belonged to K. pneumoniae sensu stricto (phylogroup Kp1), and all but one were recovered from the hospital setting. The distribution of species and phylogroups across the different niches was clearly nonrandom, with a distinct separation of Kp1 and Klebsiella variicola (Kp3). The most frequent sequence types (STs) (≥5 isolates) were previously recognized as high-risk multidrug-resistant (MDR) clones, namely, ST17, ST307, ST11, ST147, ST152, and ST45. Only 8 out of the 63 STs (12.7%) associated with human isolates were also found in nonhuman sources. A total of 22 KpSC isolates were defined as hypervirulent: 15 associated with human infections (9.8% of all human isolates), 4 (8.9%) associated with dogs, and 3 (15%) associated with pigs. Most of the human isolates (33.3%) belonged to the globally successful sublineage CG23-I. ST86 was the only clone shared by a human and a nonhuman (dog) source. Our work shows the limited transmission of KpSC isolates between human and nonhuman sources and points to the hospital setting as a cornerstone of the spread of MDR clones and antibiotic resistance genes. IMPORTANCE In this study, we characterized the presence and genomic features of isolates of the Klebsiella pneumoniae species complex (KpSC) from human and nonhuman sources in Guadeloupe (French West Indies) in order to identify the reservoirs and routes of transmission. This is the first study in an island environment, an ideal setting that limits the contribution of external imports. Our data showed the limited transmission of KpSC isolates between the different compartments. In contrast, we identified the hospital setting as the epicenter of antibiotic resistance due to the nosocomial spread of successful multidrug-resistant (MDR) K. pneumoniae clones and antibiotic resistance genes. Ecological barriers and/or limited exposure may restrict spread from the hospital setting to other reservoirs and vice versa. These results highlight the need for control strategies focused on health care centers, using genomic surveillance to limit the spread, particularly of high-risk clones, of this important group of MDR pathogens.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Dogs , Humans , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Guadeloupe/epidemiology , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Swine , Bacterial Zoonoses
3.
Bioinform Adv ; 2(1): vbac010, 2022.
Article in English | MEDLINE | ID: mdl-36699379

ABSTRACT

Summary: Sequencing and other biological data are now more frequently available and at a lower price. Mutual tools and strategies are needed to analyze the huge amount of heterogeneous data generated by several research teams and devices. Bioinformatics represents a growing field in the scientific community globally. This multidisciplinary field provides a great amount of tools and methods that can be used to conduct scientific studies in a more strategic way. Coordinated actions and collaborations are needed to find more innovative and accurate methods for a better understanding of real-life data. A wide variety of organizations are contributing to KaruBioNet in Guadeloupe (French West Indies), a Caribbean archipelago. The purpose of this group is to foster collaboration and mutual aid among people from different disciplines using a 'one health' approach, for a better comprehension and surveillance of humans, plants or animals' health and diseases. The KaruBioNet network particularly aims to help researchers in their studies related to 'omics' data, but also more general aspects concerning biological data analysis. This transdisciplinary network is a platform for discussion, sharing, training and support between scientists interested in bioinformatics and related fields. Starting from a little archipelago in the Caribbean, we envision to facilitate exchange between other Caribbean partners in the future, knowing that the Caribbean is a region with non-negligible biodiversity which should be preserved and protected. Joining forces with other Caribbean countries or territories would strengthen scientific collaborative impact in the region. Information related to this network can be found at: http://www.pasteur-guadeloupe.fr/karubionet.html. Furthermore, a dedicated 'Galaxy KaruBioNet' platform is available at: http://calamar.univ-ag.fr/c3i/galaxy_karubionet.html. Availability and implementation Information about KaruBioNet is availabe at: http://www.pasteur-guadeloupe.fr/karubionet.html. Contact: dcouvin@pasteur-guadeloupe.fr. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

4.
Front Public Health ; 9: 649190, 2021.
Article in English | MEDLINE | ID: mdl-34178915

ABSTRACT

After spreading in the Americas, West Nile virus was detected in Guadeloupe (French West Indies) for the first time in 2002. Ever since, several organizations have conducted research, serological surveys, and surveillance activities to detect the virus in horses, birds, mosquitoes, and humans. Organizations often carried them out independently, leading to knowledge gaps within the current virus' situation. Nearly 20 years after the first evidence of West Nile virus in the archipelago, it has not yet been isolated, its impact on human and animal populations is unknown, and its local epidemiological cycle is still poorly understood. Within the framework of a pilot project started in Guadeloupe in 2019, West Nile virus was chosen as a federative model to apply the "One Health" approach for zoonotic epidemiological surveillance and shift from a sectorial to an integrated surveillance system. Human, animal, and environmental health actors involved in both research and surveillance were considered. Semi-directed interviews and a Social Network Analysis were carried out to learn about the surveillance network structure and actors, analyze information flows, and identify communication challenges. An information system was developed to fill major gaps: users' needs and main functionalities were defined through a participatory process where actors also tested and validated the tool. Additionally, all actors shared their data, which were digitized, cataloged, and centralized, to be analyzed later. An R Shiny server was integrated into the information system, allowing an accessible and dynamic display of data showcasing all of the partners' information. Finally, a series of virtual workshops were organized among actors to discuss preliminary results and plan the next steps to improve West Nile Virus and vector-borne or emerging zoonosis surveillance. The actors are willing to build a more resilient and cooperative network in Guadeloupe with improved relevance, efficiency, and effectiveness of their work.


Subject(s)
West Nile Fever , West Nile virus , Animals , Caribbean Region/epidemiology , Guadeloupe/epidemiology , Horses , Mosquito Vectors , Pilot Projects , West Indies , West Nile Fever/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL