Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Neuropsychopharmacol ; 16(7): 1587-97, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23375146

ABSTRACT

The C-type natriuretic peptide (CNP) exerts its action via stimulation of the cyclic GMP (cGMP) signalling pathway, which includes the activation of cGMP-dependent protein kinases. The pathway can also be activated by inhibitors of phosphodiesterases (PDE) that hydrolyse cGMP. The present report shows that activation of the cGMP pathway by CNP, by bromo-cGMP, a cell-permeant cGMP analogue, or by the PDE inhibitor zaprinast dose dependently reduces intravenous cocaine self-administration by rats. The effect was found when the compounds were injected in situ into the prefrontal cortex, but not when they were injected into the nucleus accumbens. A decrease in the number of cocaine infusions performed by rats was obtained under the fixed ratio-1 schedule of reinforcement as well as under a progressive ratio schedule, which evaluates the motivation of the animals for the drug. Decrease in cocaine self-administration was accompanied with reduced expression of the epigenetic markers methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2) in dopaminergic projection areas. An increase in the acetylation level of histone H3, but not of histone H4, was also noticed. Since MeCP2 and HDAC2 are known to modulate dynamic functions in the adult brain, such as synaptic plasticity, our results showing that activation of the cGMP signal transduction pathway decreased both cocaine intake and expression of the epigenetic markers strongly suggest that the MeCP2/HDAC2 complex is involved in the analysis of the reinforcing properties of cocaine in the prefrontal cortex.


Subject(s)
Brain/drug effects , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Histone Deacetylase 2/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Natriuretic Peptide, C-Type/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Analysis of Variance , Animals , Brain/enzymology , Conditioning, Operant/drug effects , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Gene Expression Regulation/drug effects , Male , Protein Serine-Threonine Kinases/metabolism , Purinones/pharmacology , Rats , Rats, Wistar , Reinforcement Schedule , Self Administration
2.
Brain Behav ; 2(6): 732-40, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23170236

ABSTRACT

Nitric oxide (NO) and the C-type natriuretic peptide (CNP) exert their action via stimulation of the cyclic GMP (cGMP)-signaling pathway, which includes the activation of cGMP-dependent protein kinases (PKG). The present report shows that the activation of PKG by local application of 8-bromo-cGMP in the caudate-putamen reduced the expression of the epigenetic markers, methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2), in dopaminergic projection areas of cocaine-treated rats. An effect of lesser amplitude was observed when rats were not injected with cocaine. We also studied the effect of PKG overexpression by injecting a plasmid vector containing the human PKG-Iα cDNA in either the caudate-putamen or the ventral tegmental area. Injection in the caudate-putamen reduced the epigenetic parameters with higher amplitude than the cGMP analog. The effect was abolished by the injection of a selective PKG inhibitor, confirming that it was due to PKG-dependent phosphorylation. As MeCP2 and HDAC2 modulate dynamic functions in the adult brain such as memory formation and synaptic plasticity, the downregulation of expression by PKG suggests that the cGMP pathway affects cognitive processes through a mechanism that comprises the MeCP2/HDAC2 complex and the subsequent control of gene silencing.

3.
Curr Neuropharmacol ; 9(1): 21-5, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21886555

ABSTRACT

Drug addiction is a chronic brain disease characterized by a persistent risk of relapse, even after a long period of abstinence. A current hypothesis states that relapse results from lasting neuroadaptations that are induced in response to repeated drug administration. The adaptations require gene expression, some of which being under the control of stable epigenetic regulations. We have previously demonstrated that pretreatment with histone deacetylase (HDAC) inhibitors reduces the cocaine reinforcing properties as well as the motivation of rats for cocaine. We show here that the same HDAC inhibitors, trichostatin A and phenylbutyrate, significantly reduced the cocaine-seeking behavior induced by the combination of a cocaine injection together with the exposure to a light cue previously associated with cocaine taking. Reinstatement of drug-seeking behavior was carried out after a 3-week withdrawal period, which came after ten daily sessions of cocaine intravenous self-administration. Our results suggest that pharmacological treatment aimed at modulating epigenetic regulation, and particularly treatment that would inhibit HDAC activity, could reduce the risk of relapse, a major drawback in the treatment of drug addiction.

SELECTION OF CITATIONS
SEARCH DETAIL