Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 191: 114676, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059938

ABSTRACT

Popcorn is a specialty corn with worldwide popularity as a snack. Despite having great market demand, genetic improvement in popping quality is limited, which is caused by the limited germplasm utilization and narrow genetic base. An assortment of diverse germplasm, their effective characterization, and integration into popcorn breeding pipeline is the foundation for an efficient breeding program. Here, kernel characteristics, popping quality traits, and agro-morphological traits were evaluated across three locations on a diverse panel of 48 popcorn inbreds derived from diverse landraces and populations of exotic and indigenous origin. The variations due to genotypes, locations, and genotype × location interaction were highly significant. The popping quality traits recorded wide variation with a high coefficient of genotypic determination. The kernel dimensions, kernel density, test weight, and grain yield were negatively correlated with popping quality traits. Genotypes with rice-type kernels exhibited better popping quality than pearl-type kernels. Analysis of genotype × location (G×L) interaction identified two target locations for the key popping quality trait, popping expansion volume. PMI-PC-175, PMI-PC-187, PMI-PC-188, and PMI-PC-189 were identified as superior genotypes over checks for desirable popping quality, agronomic performance, and high grain yield. The contrasting inbreds for popping quality and flake shape (mushroom vs. butterfly) can be utilized for developing mapping populations to enhance our understanding of molecular aspects of popping quality traits. Further, the promising inbreds can be utilized in the genetic improvement of popcorn and crossed to develop superior popcorn hybrids. The results suggest a potential opportunity to establish an efficient popcorn breeding program.


Subject(s)
Genotype , Plant Breeding , Seeds , Zea mays , Zea mays/genetics , Seeds/genetics , Phenotype
2.
Genes (Basel) ; 13(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35456424

ABSTRACT

Maize is an important cereal crop in the world for feed, food, fodder, and raw materials of industries. Turcicum leaf blight (TLB) is a major foliar disease that can cause more than 50% yield losses in maize. Considering this, the molecular diversity, population structure, and genome-wide association study (GWAS) for TLB resistance were studied in 288 diverse inbred lines genotyped using 89 polymorphic simple sequence repeats (SSR) markers. These lines werescreened for TLB disease at two hot-spot locations under artificially inoculated conditions. The average percent disease incidence (PDI) calculated for each genotype ranged from 17 (UMI 1201) to 78% (IML 12-22) with an overall mean of 40%. The numbers of alleles detected at a locus ranged from twoto nine, with a total of 388 alleles. The polymorphic information content (PIC) of each marker ranged between 0.04 and 0.86. Out of 89 markers, 47 markers were highly polymorphic (PIC ≥ 0.60). This indicated that the SSR markers used were very informative and suitable for genetic diversity, population structure, and marker-trait association studies.The overall observed homozygosity for highly polymorphic markers was 0.98, which indicated that lines used were genetically pure. Neighbor-joining clustering, factorial analysis, and population structure studies clustered the 288 lines into 3-5 groups. The patterns of grouping were in agreement with the origin and pedigree records of the genotypesto a greater extent.A total of 94.10% lines were successfully assigned to one or another group at a membership probability of ≥0.60. An analysis of molecular variance (AMOVA) revealed highly significant differences among populations and within individuals. Linkage disequilibrium for r2 and D' between loci ranged from 0 to 0.77 and 0 to 1, respectively. A marker trait association analysis carried out using a general linear model (GLM) and mixed linear model (MLM), identified 15 SSRs markers significantly associated with TLB resistance.These 15 markers were located on almost all chromosomes (Chr) except 7, 8, and 9. The phenotypic variation explained by these loci ranged from 6% (umc1367) to 26% (nc130, phi085). Maximum 7 associated markers were located together on Chr 2 and 5. The selected regions identified on Chr 2 and 5 corroborated the previous studies carried out in the Indian maize germplasm. Further, 11 candidate genes were identified to be associated with significant markers. The identified sources for TLB resistance and associated markers may be utilized in molecular breeding for the development of suitable genotypes.


Subject(s)
Genome-Wide Association Study , Zea mays , Genetic Variation , Genotype , Linkage Disequilibrium , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL