Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 132(17): 173601, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38728729

ABSTRACT

The temporal coherence of an ideal Bose gas increases as the system approaches the Bose-Einstein condensation threshold from below, with coherence time diverging at the critical point. However, counterexamples have been observed for condensates of photons formed in an externally pumped, dye-filled microcavity, wherein the coherence time decreases rapidly for increasing particle number above threshold. This Letter establishes intermode correlations as the central explanation for the experimentally observed dramatic decrease in the coherence time beyond critical pump power.

2.
Phys Rev Lett ; 127(18): 180402, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34767418

ABSTRACT

Spin ensembles with a comb-shaped spectrum have shown exciting properties as efficient quantum memories. Here, we present a rigorous theoretical study of such atomic frequency combs in the strong coupling limit of cavity QED, based on a full quantum treatment using tensor-network methods. Our results demonstrate that arbitrary multiphoton states in the cavity are almost perfectly absorbed by the spin ensemble and reemitted as parity-flipped states at periodic time intervals. Fidelity values near unity are achieved in these revived states by compensating for energy shifts induced by the strong spin-cavity coupling through adjustments of individual coupling values of the teeth in the atomic frequency comb.

3.
Phys Rev Lett ; 126(15): 150602, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33929251

ABSTRACT

Phase transitions, being the ultimate manifestation of collective behavior, are typically features of many-particle systems only. Here, we describe the experimental observation of collective behavior in small photonic condensates made up of only a few photons. Moreover, a wide range of both equilibrium and nonequilibrium regimes, including Bose-Einstein condensation or laserlike emission are identified. However, the small photon number and the presence of large relative fluctuations places major difficulties in identifying different phases and phase transitions. We overcome this limitation by employing unsupervised learning and fuzzy clustering algorithms to systematically construct the fuzzy phase diagram of our small photonic condensate. Our results thus demonstrate the rich and complex phase structure of even small collections of photons, making them an ideal platform to investigate equilibrium and nonequilibrium physics at the few particle level.

4.
Nat Commun ; 11(1): 1390, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32170081

ABSTRACT

While equilibrium phase transitions are easily described by order parameters and free-energy landscapes, for their non-stationary counterparts these quantities are usually ill-defined. Here, we probe transient non-equilibrium dynamics of an optically pumped, dye-filled microcavity. We quench the system to a far-from-equilibrium state and find delayed condensation close to a critical excitation energy, a transient equivalent of critical slowing down. Besides number fluctuations near the critical excitation energy, we show that transient phase transitions exhibit timing jitter in the condensate formation. This jitter is a manifestation of the randomness associated with spontaneous emission, showing that condensation is a stochastic, rather than deterministic process. Despite the non-equilibrium character of this phase transition, we construct an effective free-energy landscape that describes the formation jitter and allows, in principle, its generalization to a wider class of processes.

5.
Phys Rev Lett ; 123(20): 203602, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31809104

ABSTRACT

We investigate the response of a photonic gas interacting with a reservoir of pumped dye molecules to quenches in the pump power. In addition to the expected dramatic critical slowing down of the equilibration time around phase transitions, we find extremely slow equilibration even far away from phase transitions. This noncritical slowing down can be accounted for quantitatively by fierce competition among cavity modes for access to the molecular environment, and we provide a quantitative explanation for this noncritical slowing down.

SELECTION OF CITATIONS
SEARCH DETAIL