Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(21): 27032-27047, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32388756

ABSTRACT

Three different synthesis methods were applied to obtain TiO2 nanoparticles: microwave-assisted hydrothermal (TiO2-MW), sonochemical (TiO2-US), and polymeric precursor (TiO2-PP). The nanoparticles thus obtained presented 93% (TiO2-MW) and 92% (TiO2-US) anatase phase, and TiO2-PP 93% rutile phase. The TiO2-US sample performed best during the Prozac® photodegradation assays because of its lipophilic surface, attributable to the C-H groups therein. Additionally, adsorption rate and photodegradation were optimized by adjusting Prozac® solution to pH ~ 8. Following Prozac® photodegradation, quantitative monitoring of its by-products (PPMA, MAEB, and TFMP) was done using HPLC. This quantitative approach led us to conclude that semiconductor photoactivity cannot be discussed solely in terms of the main compound. Lastly, it was seen that these by-products compete with each other in the degradation mechanisms and are influenced by different materials. Graphical abstract.


Subject(s)
Microwaves , Nanoparticles , Catalysis , Fluoxetine , Titanium
2.
ACS Appl Mater Interfaces ; 12(15): 17492-17501, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32216323

ABSTRACT

In this work, the effect of copper addition on NiMo coating is evaluated in regard to the hydrogen evolution reaction (HER). NiMo and NiMo-NiCu composites are prepared by a simple coelectrodeposition process. The effect of Cu on deposit characters were tested by varying it in the range of 0.06-0.20 molar ratio. Copper addition promotes the growth of a new crystalline phase: NiCu. Also, the copper addition changed the composite surface. NiMo-NiCu0.12 shows a surface roughness 30 times higher than the NiMo material. NiMo-NiCu materials present higher activity toward HER, larger electroactive area, and higher stability in continuous water electrolysis than NiMo catalysts, as demonstrated by Tafel curves, electrochemical impedance spectroscopy measurements, and polarization tests. The combination of the large electroactive area due to the copper addition, the synergism between Ni-Mo, and the presence of Ni and Mo oxides on the surface results in catalyst with excellent features for HER application.

SELECTION OF CITATIONS
SEARCH DETAIL