Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Microbiol ; 131(5): 2488-2499, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34008224

ABSTRACT

AIMS: The aim of the study is to evaluate hexanoic acid (HA) as an alternative to manage citrus canker. METHODS AND RESULTS: The minimal growth inhibitory concentration of HA against Xanthomonas citri subsp. citri was determined at 2·15 mmol l-1 using a respiratory activity assay. Growth curves at different pH values showed that growth inhibition was not due to media acidification induced by HA. The germination rate and root elongation of Lactuca sativa seeds exposed to different concentrations of HA (varying from 0·86 to 5·16 mmol l-1 ) were assessed to screen for phytotoxicity. The acid exhibited low phytotoxicity for L. sativa at 1·29 and 2·58 mmol l-1 . To evaluate the ability of HA to protect citrus against X. citri infection, leaves of Citrus sinensis were sprayed with the acid and subsequently challenged with X. citri. HA at 3·44 mmol l-1 was able to protect citrus against infection, showing a reduction of three orders of magnitude in the number of citrus canker lesions per cm2 when compared to the untreated negative control. CONCLUSION: HA is a potential alternative to copper for citrus canker management. SIGNIFICANCE AND IMPACT OF THE STUDY: HA inhibits X. citri growth, exhibits low phytotoxicity and is an alternative to copper for the protection of citrus plants against bacterial infection.


Subject(s)
Citrus , Xanthomonas , Agrochemicals , Caproates , Copper/pharmacology , Plant Diseases/prevention & control
2.
Environ Monit Assess ; 191(9): 565, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31414303

ABSTRACT

This research compared the effects of biosurfactant on the biodegradation of biodiesel and vegetable oils while validating two conceptually diverging methodologies. The two experimental setups were successfully modeled towards the effects of biosurfactants during biodegradation. We established the equivalence of both methodologies from the data output. As expected, the biosurfactants caused an increased oil uptake, thus increasing biodegradation performance. Cooking oils were favored by the microbial consortium as a carbon source when compared with biodiesel fuel, especially after use in food preparation. However, we found that biodiesel substrate standout with the highest biodegradation rates. Our results might indicate that a rapid metabolic change from the original compound initially favored biodiesels during the assimilation of organic carbon for a set specialized microbial inoculum. The data output was successfully combined with mathematical models and statistical tools to describe and predict the actual environmental behavior of biodiesel and vegetable oils. The models confirmed and predicted the biodegradation effectiveness with biosurfactants and estimated the required timeframe to achieve satisfactory contaminant removal.


Subject(s)
Biodegradation, Environmental , Biofuels/analysis , Environmental Monitoring/methods , Microbial Consortia/physiology , Plant Oils/analysis , Surface-Active Agents/chemistry , Carbon , Plant Oils/metabolism , Vegetables/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL