Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Heliyon ; 10(8): e29205, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638986

ABSTRACT

Spotted babylon were exposed to three different pH levels (7.0, 8.0 and 9.0) and four different concentrations of ammonia nitrogen (0.02, 1.02, 5.10 and 10.20 mg/L) in seawater to determine their acute toxicity and physiological responses to environmental fluctuation. The study evaluated four antioxidant enzymes: catalase (CAT), alkaline, superoxide dismutase (SOD), peroxidase (POD) and glutathione peroxidase (GSH-PX), and two immunoenzymes: acid phosphatase (ACP) and phosphatase (AKP). Over time, the immunoenzyme activity was significantly affected by pH and ammonia nitrogen concentration. After being exposed to pH and ammonia nitrogen, the spotted babylon showed signs of unresponsiveness to external stimuli, reduced vitality, slow movement, and an inability to maintain an upright position. Over time, the spotted babylon exhibited a trend of increasing and then decreasing GSH-PX, CAT, and SOD activities to adapt to the changing environment and enhance its immunity. On the contrary, the POD and ACP activities exhibited a decreasing trend initially, followed by an increasing trend over time and the AKP activity showed a gradual increase with time. The combined effect of pH and ammonia was found to be stronger than the effect of either factor alone. The interaction between pH and ammonia increased the activity of the spotted babylon antioxidant enzymes, induced oxidative stress, and reduced the ability of the spotted babylon's non-specific immune system to reverse it. Thus, the reverse-back of the spotted babylon was higher when pH and ammonia stress were dual than when pH or ammonia were single-factor stresses. The study results will establish a theoretical basis for analyzing the risk of multiple factors to the spotted babylon, and also enrich the basic information about the shellfish immune system.

2.
Antioxidants (Basel) ; 12(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37759962

ABSTRACT

In order to reveal the acute toxicity and physiological changes of the spotted babylon (Babylonia areolata) in response to environmental manipulation, the spotted babylon was exposed to three pH levels (7.0, 8.0 and 9.0) of seawater and four concentrations of nitrite nitrogen (0.02, 2.7, 13.5 and 27 mg/L). The activities of six immunoenzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP) and peroxidase (POD), were measured. The levels of pH and nitrite nitrogen concentrations significantly impacted immunoenzyme activity over time. After the acute stress of pH and nitrite nitrogen, the spotted babylon appeared to be unresponsive to external stimuli, exhibited decreased vigor, slowly climbed the wall, sank to the tank and could not stand upright. As time elapsed, with the extension of time, the spotted babylon showed a trend of increasing and then decreasing ACP, AKP, CAT and SOD activities in order to adapt to the mutated environment and improve its immunity. In contrast, POD and GSH-PX activities showed a decrease followed by an increase with time. This study explored the tolerance range of the spotted babylon to pH, nitrite nitrogen, and time, proving that external stimuli activate the body's immune response. The body's immune function has a specific range of adaptation to the environment over time. Once the body's immune system was insufficient to adapt to this range, the immune system collapsed and the snail gradually died off. This study has discovered the suitable pH and nitrite nitrogen ranges for the culture of the spotted babylon, and provides useful information on the response of the snail's immune system.

3.
PeerJ ; 7: e7793, 2019.
Article in English | MEDLINE | ID: mdl-31616591

ABSTRACT

Melatonin is an important biologically active hormone that plays a vital role in plant growth and development. In particular, it has been investigated for its roles in abiotic stress management. The current experiment was carried out to investigate the protective role of melatonin in photosynthetic traits and the antioxidant defense system of maize seedling under drought stress. Maize seedlings were subjected to drought stress (40-45% FC) after two weeks of seedling emergence, followed by a foliar spray (0, 25, 50, 75 and 100 µM) and soil drench of melatonin (0, 25, 50, 75 and 100 µM). Our results indicated that drought stress negatively affected maize seedling and decreased plant growth and development, biomass accumulation, reduced chlorophyll, and carotenoid content, and significantly declined photosynthetic rate and stomatal conductance. On the other hand, reactive oxygen species, soluble protein, and proline content increased under drought stress. However, the application of exogenous melatonin reduced the reactive oxygen species burst and enhanced the photosynthetic activity by protecting from damages through activation of various antioxidant enzymes under drought stress. Foliar application of 100 µM and soil drench of 50 µM melatonin was the most effective treatment concentrations under drought stress. Our current findings hereby confirmed the mitigating potential of melatonin application for drought stress by maintaining plant growth, improving the photosynthetic characteristics and activities of antioxidants enzymes.

4.
Environ Sci Pollut Res Int ; 25(29): 29366-29378, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30121770

ABSTRACT

Lodging is a major constraint contributing to poor grain yield and quality of wheat (Triticum aestivum L.) worldwide. The use of plant growth regulators is becoming a foremost agro-chemical approach for minimizing the risk of lodging in cereal crops. The present study was conducted to examine the effects of the paclobutrazol application on culm physical strength, lignin content, and lodging resistance of wheat. Wheat seeds were soaked in paclobutrazol at the concentrations of 0 (CK, as control), 200 (PB1), 300 (PB2), and 400 (PB3) mg L-1. Our results showed that paclobutrazol resulted in a dose-dependent decrease of plant height, internode length, and center of gravity height. Paclobutrazol treatments evidently increased the culm diameter, culm filling degree, and wall thickness of basal internodes, resulting in greater stalk-breaking strength and lodging resistance index (CLRI), where their maximum values were obtained with PB1 treatment. In addition, the activities of lignin-related enzymes were improved by paclobutrazol, particularly at low concentration, which increased the lignin accumulation of the basal internodes of wheat, subsequently improving the capability of stalk lodging resistance. Moreover, the correlation analysis revealed significant correlations between stem diameter, culm filling degree, and lignin with stalk bending strength and CLRI. The paclobutrazol concentration ≥ 300 mg L-1 (PB2 and PB3 treatments) showed inhibitive effects on various culm morphological traits. These results suggest that not only the plant height, but also the lignin contents and physical strength of internodes are closely related with the lodging resistance of wheat, and reduction in plant height along with improved culm morphological characteristics and higher lignin accumulation in basal internodes could effectively relieve the risk of lodging.


Subject(s)
Lignin/biosynthesis , Plant Stems/drug effects , Triazoles/pharmacology , Triticum/drug effects , Triticum/growth & development , China , Enzymes/metabolism , Lignin/metabolism , Phenotype , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Plant Stems/growth & development , Seeds/drug effects , Seeds/growth & development
5.
Sci Rep ; 6: 20994, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26869520

ABSTRACT

Because of inadequate nutrient and water supply, soils are often unproductive in Northwest China. We studied the effects of manure application at low (LM 7.5 t ha(-1)), medium (MM 15 t ha(-1)), and high (HM 22.5 t ha(-1)) rates combined with fixed levels of chemical fertilizers on maize growth and rainfall use efficiency compared with chemical fertilizers (CK) under semi-arid conditions over a three-year period. HM and MM treatments could significantly increase soil water storage (0-120 cm) at tasseling stage of maize compared with LM treatment and CK (P < 0.05). Dry matter accumulation and rainfall use efficiency increased as manure application rate increasing (P < 0.05). HM treatment significantly increased rainfall use efficiency by 6.5-12.7% at big trumpeting - tasseling stage compared with LM and MM treatments. HM and MM treatments increased rainfall use efficiency by 8.6-18.1% at tasseling - grain filling stage compared with CK. There was no significant difference on biomass between HM and MM treatments at grain filling and maturity stages of maize in 2009 and 2010.


Subject(s)
Biomass , Crop Production/methods , Manure , Rain , Soil , Zea mays/growth & development
6.
Ying Yong Sheng Tai Xue Bao ; 26(5): 1382-90, 2015 May.
Article in Chinese | MEDLINE | ID: mdl-26571655

ABSTRACT

A field experiment was conducted to determine the regulation of crop photosynthesis and output and water saving effect under ridge and furrow rain harvesting with supplemental irrigation in Guanzhong irrigation district. The experiment was set with 5 treatments with irrigation at returning green stage, and the widths of both ridge and furrow being 60 cm. T1, T2 and T3 were in the ridge and furrow rain harvesting planting pattern, with the irrigation volumes being 0, 375 and 750 m3 · hm(-2) respectively, T4 was flat planting with irrigation (border irrigation) of 750 m3 · hm(-2) and CK was flat planting without irrigation. Effects on winter wheat photosynthetic organs, photosynthetic rate, yield and water use efficiency, etc. were tested. The results showed that compared with T4, T1, T2 and T3 treatments increased the grain yield by 2.8%, 9.6% and 18.9%, improved the harvest index by 2.0% to 8.5%, advanced the flag leaf chlorophyll content by 41.9% to 64.4% significantly, and improved the 0-40 cm layer soil moisture content by 0.1%-4.6% during the whole growth period. Photosynthetic rates at the flowering and filling stages also increased by 22.3% to 54.2% and -4.3% to 67.2%, respectively. Total water use efficiencies (WUEy) were 17.9%, 10.4% and 15.4% higher than that of T4, and 69.3%, 58.6% and 65.7% higher than that of CK (P < 0.05), respectively, and enhanced precipitation utilization efficiency ( PUE ) by 94.3%-124.5% than CK. Leaf areas of T2 and T3 treatments at each growth stage were significantly higher than that of T4 and CK, irrigation water use efficiencies (IUE) were 119.1% and 18.8% higher than that of T4, respectively. Therefore, it was concluded that ridge and furrow rain harvesting cultivation could maintain higher grain yield than border irrigation without irrigation or with irrigation reduction by 50%. The utilization efficiency of irrigation water under the condition of irrigation reduction by 50% was improved significantly, and the ridge and furrow rain harvesting could significantly improve whole cropland water use efficiency in the year of less rainfall.


Subject(s)
Agricultural Irrigation , Agriculture/methods , Photosynthesis , Rain , Triticum/physiology , Biomass , Chlorophyll , Plant Leaves , Soil , Water
7.
PLoS One ; 10(4): e0120994, 2015.
Article in English | MEDLINE | ID: mdl-25880452

ABSTRACT

Soil infertility is the main barrier to dryland agricultural production in China. To provide a basis for the establishment of a soil amelioration technical system for rainfed fields in the semiarid area of northwest China, we conducted a four-year (2007-2011) field experiment to determine the effects of wheat straw incorporation on the arid soil nutrient levels of cropland cultivated with winter wheat after different straw incorporation levels. Three wheat straw incorporation levels were tested (H: 9000 kg hm(-2), M: 6000 kg hm(-2), and L: 3000 kg hm(-2)) and no straw incorporation was used as the control (CK). The levels of soil nutrients, soil organic carbon (SOC), soil labile organic carbon (LOC), and enzyme activities were analyzed each year after the wheat harvest. After straw incorporation for four years, the results showed that variable straw amounts had different effects on the soil fertility indices, where treatment H had the greatest effect. Compared with CK, the average soil available N, available P, available K, SOC, and LOC levels were higher in the 0-40 cm soil layers after straw incorporation treatments, i.e., 9.1-30.5%, 9.8-69.5%, 10.3-27.3%, 0.7-23.4%, and 44.4-49.4% higher, respectively. On average, the urease, phosphatase, and invertase levels in the 0-40 cm soil layers were 24.4-31.3%, 9.9-36.4%, and 42.9-65.3% higher, respectively. Higher yields coupled with higher nutrient contents were achieved with H, M and L compared with CK, where these treatments increased the crop yields by 26.75%, 21.51%, and 7.15%, respectively.


Subject(s)
Enzymes/metabolism , Soil , Triticum/metabolism , Carbon/metabolism , China
8.
Ying Yong Sheng Tai Xue Bao ; 23(2): 419-25, 2012 Feb.
Article in Chinese | MEDLINE | ID: mdl-22586967

ABSTRACT

A 4-year field experiment was conducted at the Heyang Research Station in Weibei dryland to study the effects of organic fertilizer application rate on the leaf photosynthetic characteristics and grain yield of dryland maize. Comparing with applying chemical fertilizer, applying organic fertilizer increased the leaf photosynthetic rate and stomatal conductance, but decreased the leaf intercellular CO2 concentration at each growth stage of maize significantly. With the increasing application rate of organic fertilizer, the leaf photosynthetic rate and stomatal conductance at each growth stage of maize had a gradual increase, while the leaf intercellular CO2 concentration had a gradual decrease. The leaf photosynthesis of maize at each growth stage was controlled by non-stomatal factors, and the application of organic fertilizer reduced the non-stomatal limitation on the photosynthesis performance significantly. The 4-year application of organic fertilizer improved soil nutrient status, and soil nutrients were no longer the main factors limiting the leaf photosynthetic rate and grain yield of maize.


Subject(s)
Biomass , Fertilizers , Photosynthesis/physiology , Zea mays/growth & development , Zea mays/physiology , Edible Grain/growth & development , Organic Chemicals , Plant Leaves/physiology , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL