Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Cardiovasc Med ; 11: 1441123, 2024.
Article in English | MEDLINE | ID: mdl-39257845

ABSTRACT

Background: Thoracic Aortic Dissection (TAD) is a life-threatening disease without effective drug treatments. The disruption of HASMCs homeostasis is one direct histopathologic alteration in TAD pathological process. Several miRNAs have been shown abnormally expressed in TAD and to regulate HASMCs homeostasis. The primary goal of this study is to identify the miRNAs and the specific mechanisms that lead to HASMCs homeostasis disruption. Methods: Bulk miRNA sequencing was performed to explore the aberrantly expressed miRNA profile in TAD, and differentially expressed miRNAs were verified with qRT-PCR. To explore the role of the key miRNAs (miR-3529) in HASMCs homeostasis, we overexpressed this miRNA with lentivirus in HASMCs. Integrative transcriptomics and metabolomics analysis were used to uncover the functional roles of this miRNA in regulating HASMCs homeostasis. Further, the target gene of miR-3529 was predicted by bioinformatics and verified through a dual-luciferase reporter assay. Results: Bulk miRNA sequencing showed miR-3529 was elevated in TAD tissues and confirmed by qRT-PCR. Further experimental assay revealed miR-3529 upregulation induced HASMCs homeostasis disruption, accompanied by reducing contractile markers and increasing pro-inflammatory cytokines. Integrative transcriptomics and metabolomics analysis showed that miR-3529 overexpression altered the metabolic profile of HASMC, particularly lipid metabolism. ABCA1 was found to be a direct target of miR-3529. Mechanistically, the miR-3529/ABCA1 axis disrupted HASMCs homeostasis through the JAK2/STAT3 signaling pathway. Conclusions: miR-3529 is elevated in TAD patients and disrupts HASMCs homeostasis by reprogramming metabolism through the JAK2/STAT3 signaling pathway. These findings favor a role for miR-3529 as a novel target for TAD therapy.

2.
Int J Surg ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833337

ABSTRACT

BACKGROUND: Warfarin is a common oral anticoagulant, and its effects vary widely among individuals. Numerous dose-prediction algorithms have been reported based on cross-sectional data generated via multiple linear regression or machine learning. This study aimed to construct an information fusion perturbation theory and machine learning prediction model of warfarin blood levels based on clinical longitudinal data from cardiac surgery patients. METHODS AND MATERIAL: The data of 246 patients were obtained from electronic medical records. Continuous variables were processed by calculating the distance of the raw data with the moving average (MA ∆vki(sj)), and categorical variables in different attribute groups were processed using Euclidean distance (ED ǁ∆vk(sj)ǁ). Regression and classification analyses were performed on the raw data, MA ∆vki(sj), and ED ǁ∆vk(sj)ǁ. Different machine-learning algorithms were chosen for the STATISTICA and WEKA software. RESULTS: The random forest (RF) algorithm was the best for predicting continuous outputs using the raw data. The correlation coefficients of the RF algorithm were 0.978 and 0.595 for the training and validation sets, respectively, and the mean absolute errors were 0.135 and 0.362 for the training and validation sets, respectively. The proportion of ideal predictions of the RF algorithm was 59.0%. General discriminant analysis (GDA) was the best algorithm for predicting the categorical outputs using the MA ∆vki(sj) data. The GDA algorithm's total true positive rate (TPR) was 95.4% and 95.6% for the training and validation sets, respectively, with MA ∆vki(sj) data. CONCLUSIONS: An information fusion perturbation theory and machine learning model for predicting warfarin blood levels was established. A model based on the RF algorithm could be used to predict the target international normalized ratio (INR), and a model based on the GDA algorithm could be used to predict the probability of being within the target INR range under different clinical scenarios.

3.
Clin Pharmacol Ther ; 115(6): 1316-1325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38439157

ABSTRACT

The quality of warfarin treatment may be improved if management is guided by the use of models based upon pharmacokinetic-pharmacodynamic theory. A prospective, two-armed, single-blind, randomized controlled trial compared management aided by a web-based dose calculator (NextDose) with standard clinical care. Participants were 240 adults receiving warfarin therapy following cardiac surgery, followed up until the first outpatient appointment at least 3 months after warfarin initiation. We compared the percentage of time spent in the international normalized ratio acceptable range (%TIR) during the first 28 days following warfarin initiation, and %TIR and count of bleeding events over the entire follow-up period. Two hundred thirty-four participants were followed up to day 28 (NextDose: 116 and standard of care: 118), and 228 participants (114 per arm) were followed up to the final study visit. Median %TIR tended to be higher for participants receiving NextDose guided warfarin management during the first 28 days (63 vs. 56%, P = 0.13) and over the entire follow-up period (74 vs. 71%, P = 0.04). The hazard of clinically relevant minor bleeding events was lower for participants in the NextDose arm (hazard ratio: 0.21, P = 0.041). In NextDose, there were 89.3% of proposed doses accepted by prescribers. NextDose guided dose management in cardiac surgery patients requiring warfarin was associated with an increase in %TIR across the full follow-up period and fewer hemorrhagic events. A theory-based, pharmacologically guided approach facilitates higher quality warfarin anticoagulation. An important practical benefit is a reduced requirement for clinical experience of warfarin management.


Subject(s)
Anticoagulants , Bayes Theorem , Hemorrhage , International Normalized Ratio , Warfarin , Humans , Warfarin/administration & dosage , Warfarin/adverse effects , Female , Male , Anticoagulants/administration & dosage , Anticoagulants/adverse effects , Anticoagulants/pharmacokinetics , Aged , Middle Aged , Prospective Studies , Single-Blind Method , Hemorrhage/chemically induced , Standard of Care , Cardiac Surgical Procedures , Dose-Response Relationship, Drug , Precision Medicine/methods , Drug Dosage Calculations , Drug Monitoring/methods
4.
Int J Surg ; 109(12): 3861-3871, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37598356

ABSTRACT

BACKGROUND AND OBJECTIVES: Due to the high individual variability of anticoagulant warfarin, this study aimed to investigate the effects of vitamin K concentration and gut microbiota on individual variability of warfarin in 246 cardiac surgery patients. METHODS: The pharmacokinetics and pharmacodynamics (PKPD) model predicted international normalized ratio (INR) and warfarin concentration. Serum and fecal samples were collected to detect warfarin and vitamin K [VK1 and menaquinone-4 (MK4)] concentrations and gut microbiota diversity, respectively. In addition, the patient's medical records were reviewed for demographic characteristics, drug history, and CYP2C9, VKORC1, and CYP4F2 genotypes. RESULTS: The PKPD model predicted ideal values of 62.7% for S-warfarin, 70.4% for R-warfarin, and 76.4% for INR. The normal VK1 level was 1.34±1.12 nmol/ml (95% CI: 0.33-4.08 nmol/ml), and the normal MK4 level was 0.22±0.18 nmol/ml (95% CI: 0.07-0.63 nmol/ml). The MK4 to total vitamin K ratio was 16.5±9.8% (95% CI: 4.3-41.5%). The S-warfarin concentration of producing 50% of maximum anticoagulation and the half-life of prothrombin complex activity tended to increase with vitamin K. Further, Prevotella and Eubacterium of gut microbiota identified as the main bacteria associated with individual variability of warfarin. The results suggest that an increase in vitamin K concentration can decrease anticoagulation, and gut microbiota may influence warfarin anticoagulation through vitamin K2 synthesis. CONCLUSION: This study highlights the importance of considering vitamin K concentration and gut microbiota when prescribing warfarin. The findings may have significant implications for the personalized use of warfarin. Further research is needed to understand better the role of vitamin K and gut microbiota in warfarin anticoagulation.


Subject(s)
Cardiac Surgical Procedures , Gastrointestinal Microbiome , Humans , Warfarin/pharmacology , Vitamin K , Cytochrome P450 Family 4/genetics , Vitamin K Epoxide Reductases/genetics , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Genotype
5.
Cell Transplant ; 32: 9636897231152381, 2023.
Article in English | MEDLINE | ID: mdl-36786355

ABSTRACT

Bone marrow stem cell (BMSC) transplantation during coronary artery bypass graft (CABG) is an innovative treatment for ischemic heart disease (IHD). We conduct a meta-analysis to examine whether patients with IHD presenting heart failure with reduced ejection fraction (HFrEF) can be beneficent from CABG with additional BMSC transplantation. Electronic searches were performed on PubMed, EMBASE, Cochrane Library, and ClinicalTrials.gov from their inception to July 2021. The efficacy was based on left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), left ventricular end-diastolic volume (LVEDV), left ventricular end-diastolic volume index (LVEDVi), left ventricular end-systolic volume index (LVESVi), and 6-min walk test (6MWT) change after treatment. Eight randomized-controlled trials (RCTs) were included in this meta-analysis, with a total of 350 patients. Results showed BMSC transplantation significantly improved the LVEF [mean difference (MD) = 6.23%, 95% confidence interval (CI): 3.22%-9.24%, P < 0.0001], LVEDVi (MD = -20.15 ml/m2, 95% CI: -30.49 to -9.82 ml/m2, P < 0.00001), and LVESVi (MD = -17.69 ml/m2, 95% CI: -25.24 to -10.14 ml/m2, P < 0.00001). There was no statistically significant difference in the improvement of LVEDD, LVEDV, and 6MWT between the cell transplantation group and control groups. Subgroup analysis revealed that the intervention for control group could affect the efficacy of BMSC transplantation. Sensitivity analysis found the conclusion of LVEDD, LVEDV, and 6MWT changes was not stable. Therefore, among patients with IHD presenting HFrEF, BMSC transplantation during CABG is promising to be beneficial for postoperative left ventricular (LV) function improvement. However, according to the unstable results of the sensitivity analysis, it cannot be concluded whether the extra step has a positive effect on left ventricular remodeling and exercise capacity. RCTs with larger cohorts and more strict protocols are needed to validate these conclusions.


Subject(s)
Heart Failure , Myocardial Ischemia , Ventricular Dysfunction, Left , Humans , Bone Marrow , Coronary Artery Bypass/methods , Ventricular Function, Left , Stroke Volume , Ventricular Dysfunction, Left/therapy , Heart Failure/surgery , Bone Marrow Transplantation/methods , Treatment Outcome
6.
Stem Cells Int ; 2023: 1662182, 2023.
Article in English | MEDLINE | ID: mdl-39280589

ABSTRACT

Objective: Myocardial infarction is a leading cause of mortality worldwide. Angiogenesis in the infarct border zone is vital for heart function restoration after myocardial infarction. Hypoxia-induced MSC modification is a safe and effective approach for angiogenesis in clinical therapy; however, the mechanism still requires further investigation. In our study, we preconditioned human umbilical cord mesenchymal stem cells (huMSCs) with hypoxia and isolated the small extracellular vesicles (sEVs) to promote cardiac repair. We also investigated the potential mechanisms. Method: huMSCs were preconditioned with hypoxia (1% O2 and 5% CO2 at 37°C for 48 hours), and their sEVs were isolated using the Total Exosome Isolation reagent kit. To explore the role of miR-214 in MSC-derived sEVs, sEVs with low miR-214 expression were prepared by transfecting miR-214 inhibitor into huMSCs before hypoxia pretreatment. Scratch assays and tube formation assays were performed in sEVs cocultured with HUVECs to assess the proangiogenic capability of MSC-sEVs and MSChyp-sEVs. Rat myocardial infarction models were used to investigate the ability of miR-214-differentially expressed sEVs in cardiac repair. Echocardiography, Masson's staining, and immunohistochemical staining for CD31 were performed to assess cardiac function, the ratio of myocardial fibrosis, and the capillary density after sEV implantation. The potential mechanism by which MSChyp-sEVs enhance angiogenesis was explored in vitro by RT-qPCR and western blotting. Results: Tube formation and scratch assays demonstrated that the proangiogenic capability of huMSC-derived sEVs was enhanced by hypoxia pretreatment. Echocardiography and Masson's staining showed greater improvements in heart function and less ventricular remodeling after MSChyp-sEV transplantation. The angiogenic capability was reduced following miR-214 knockdown in MSChyp-sEVs. Furthermore, Sufu, a target of miR-214, was decreased, and hedgehog signaling was activated in HUVECs. Conclusion: We found that hypoxia induced miR-214 expression both in huMSCs and their sEVs. Transplantation of MSChyp-sEVs into a myocardial infarction model improved cardiac repair by increasing angiogenesis. Mechanistically, MSChyp-sEVs promote HUVEC tube formation and migration by transferring miR-214 into recipient cells, inhibiting Sufu expression, and activating the hedgehog pathway. Hypoxia-induced vesicle modification is a feasible way to restore heart function after myocardial infarction.

7.
Front Cell Infect Microbiol ; 12: 1043971, 2022.
Article in English | MEDLINE | ID: mdl-36741975

ABSTRACT

Background and aims: Surgical site infection is a common complication after surgery. Periprocedural antibiotics are necessary to prescribe for preventing or treating infections. The present study aimed to explore the effect of intravenous antibiotics on gut microbiota and menaquinone biosynthesis in patients, especially in elderly patients undergoing cardiac surgery. Methods: A total of 388 fecal samples were collected from 154 cardiac surgery patients. The V3-V4 hypervariable region of the bacterial 16S rRNA gene was amplified and sequenced on a MiSeq PE300. The gut microbiota diversity of samples was analyzed in terms of α- and ß-diversity at the OTU level. The different groups were classified according to antibiotics in combinations and single antibiotics. PICRUSt2 was used for preliminary prediction of the gut microbiota function for menaquinone biosynthesis. Results: The intravenously administered antibiotics which are excreted via bile represents the main antibiotics that could disturb the gut microbiota's composition in cardiac surgery patients, especially for elderly patients. The effect of antibiotics on gut microbiota is produced after antibiotics treatments over one week. The recovery of gut microbiota to the state of pre-antibiotics may require over two weeks of antibiotics withdrawal. Sex factor doesn't represent as an influencer in gut microbiota composition. Long-term use of cefoperazone-sulbactam may affect coagulation function. Conclusions: The composition of the gut microbiota had a significant change post-intravenous antibiotics treatment in cardiac surgery patients. The richness and diversity of gut microbiota are increased in elderly patients.


Subject(s)
Cardiac Surgical Procedures , Gastrointestinal Microbiome , Humans , Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Vitamin K 2/pharmacology , Feces/microbiology
8.
J Cell Mol Med ; 25(17): 8103-8114, 2021 09.
Article in English | MEDLINE | ID: mdl-34378345

ABSTRACT

Transplantation of stem cells is a promising, emerging treatment for cardiovascular diseases in the modern era. Mesenchymal stem cells (MSCs) derived from the umbilical cord are one of the most promising cell sources because of their capacity for differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells in vitro/in vivo. In addition, umbilical cord-derived MSCs (UC-MSCs) secrete many effective molecules regulating apoptosis, fibrosis and neovascularization. Another important and specific characteristic of UC-MSCs is their low immunogenicity and immunomodulatory properties. However, the application of UC-MSCs still faces some challenges, such as low survivability and tissue retention in a harmful disease environment. Gene engineering and pharmacological studies have been implemented to overcome these difficulties. In this review, we summarize the differentiation ability, secretion function, immunoregulatory properties and preclinical/clinical studies of UC-MSCs, highlighting the advantages of UC-MSCs for the treatment of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Umbilical Cord , Animals , Cell Differentiation , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Myocytes, Cardiac/cytology , Umbilical Cord/cytology , Umbilical Cord/metabolism
9.
Expert Opin Drug Metab Toxicol ; 16(1): 1-9, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31914334

ABSTRACT

Background: Warfarin acts in heart valve replacement patients to minimize thromboembolic complications. We investigated whether patients can be distinguished based on their genotypes to efficiently and safely administer warfarin therapy after heart valve replacements.Research design and methods: A retrospective analysis was conducted in patients with warfarin therapy who underwent elective heart valve replacements between January 2013 and September 2018. The patients were divided into normal, sensitive, and highly sensitive bins based on their CYP2C9 and VKORC1 genotypes. The primary endpoints were over-anticoagulation and overt bleeding.Results: 375 patients were enrolled, with 65 classified as normal, 281 as sensitive, and 29 as highly sensitive responders. Compared with normal responders, sensitive and highly sensitive responders spent more time on over-anticoagulation in the first 28 (P < 0.001) and 90 (P = 0.001) days; experienced more frequent bleeding events in the first 28 days (P = 0.029; OR, 2.18; 95% CI, 1.15-4.13); required lower warfarin doses to obtain stable INR (P < 0.001); had higher warfarin sensitivity indices (P < 0.001).Conclusion: Predicting evidence have been obtained with CYP2C9 and VKORC1 genotypes in identifying heart valve replacement patients with higher efficient sensitivity and with a higher risk of bleeding and over-anticoagulation.


Subject(s)
Anticoagulants/administration & dosage , Cytochrome P-450 CYP2C9/genetics , Hemorrhage/chemically induced , Vitamin K Epoxide Reductases/genetics , Warfarin/administration & dosage , Adult , Aged , Anticoagulants/adverse effects , Dose-Response Relationship, Drug , Female , Genotype , Heart Valve Prosthesis Implantation/methods , Hemorrhage/epidemiology , Hemorrhage/genetics , Humans , International Normalized Ratio , Male , Middle Aged , Retrospective Studies , Thromboembolism/prevention & control , Warfarin/adverse effects
10.
Int J Clin Exp Med ; 8(6): 9904-10, 2015.
Article in English | MEDLINE | ID: mdl-26309674

ABSTRACT

BACKGROUND: Blood anticoagulation after heart valve replacement is a recognized difficulty all over the world. In this study, we identified the effect of amiodarone on the function of warfarin and confirmed the countermeasure by concluding the genotype distribution of vitamin K epoxide reductase complex 1 (VKORC1) and cytochrome P450 2C9 (CYP2C9) of the patient to predict the security dose of warfarin. METHODS: Studying on the VKORC1 (-1639G>A) and CYP2C9 genotype of 271 cases on heart valve replacement in the First Affiliated Hospital of Soochow University from Jan. 2012 to Jan. 2014. Warfarin's multivariable regression equation was taken to calculate their warfarin dosage. In the study, 80 of them were selected and divided into 4 groups according to their different warfarin dosage and their usage of amiodaron. The differences of INR values at the 5(th), 8(th), 11(th), 14(th) days of operation were analyzed. RESULTS: Among the 80 cases, VKORC1 (-1639G>A) AA types accounted for 90%, and AG types accounted for another 10%, while GG types were not found. In addition that, all of the patients (100%) had CYP2C9*1/*1 type, and CYP2C9*1/*3 had not appeared. There was significant difference in INR values between the groups who used amiodarone or not. The pharmacogenetic equation was accurate in the predicting of the warfarin dosage, so that satisfied anticoagulation efficacy had been achieved in 2 weeks after surgery. CONCLUSION: It is necessary for the patients to do the warfarin pharmacogenetic test to get the suitable dose before heart valve replacement. Amiodarone can enhance the anticoagulant efficacy of warfarin, so the dosages of warfarin should be reduced properly because of the medicine combination, and INR values must be monitored more frequently to make the anticoagulant process secure and efficient.

11.
Differentiation ; 86(1-2): 57-64, 2013.
Article in English | MEDLINE | ID: mdl-23974360

ABSTRACT

The objective of this study was to screen mouse bone marrow mesenchymal stromal cells (BMSCs) according to expression of cardiac stem cell (CSC) surface antigens and to assess the effects of resulting BMSC-like subsets on cardiac function after injection in a mouse myocardial infarct model. BMSCs were sorted by magnetic beads according to the expression of differentiation antigens on the surface of mouse CSCs, and four subsets were identified on the basis of CD45 and CD31 expression: stem cell antigen-1+ (Sca-1+)/CD45-/CD31-, Sca-1+/CD45-/CD31+, Sca-1+/CD45+/CD31-, and Sca-1+/CD45+/CD31+. When co-cultured with myocardial stem cells and 5-aza-2'-deoxycytidine for 14 days, each subset showed expression of cardiac markers α-actin, connexin 43, desmin, and cardiac troponin I; however, expression was greatest in Sca-1+/CD45+/CD31+ cells. To assess the ability of these cells to improve cardiac function, each subset was injected separately into mice with myocardial infarct induced by ligation of the left anterior descending coronary artery, and in vivo cardiac dual inversion recovery (DIR) imaging and Doppler echocardiography were performed 48 h, 96 h, and 7 days after injection. Results indicated that Sca-1+/CD45+/CD31+ cells were superior in improving cardiac function compared with the other subsets and with unsorted BMSCs. These results suggest that mouse BMSC cells are polyclonal and that the BMSC-like Sca-1+/CD45+/CD31+ subset was effective in directing cardiac differentiation and improving cardiac function in mice with myocardial infarcts.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Myocardial Infarction/surgery , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mesenchymal Stem Cells/cytology , Mice , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics
12.
Zhonghua Xin Xue Guan Bing Za Zhi ; 41(3): 210-4, 2013 Mar.
Article in Chinese | MEDLINE | ID: mdl-23879945

ABSTRACT

OBJECTIVE: To search for the bone mesenchymal stem cell (MSC) subgroup which might be more effective on repairing myocardial damage. METHODS: In this experiment, four MSC subgroups were defined based on the surface differentiation antigen detection of mouse bone mesenchymal stem cells (mBMSCs): SCA-1(+)/CD45(+)/CD31(+), SCA-1(+)/CD45(+)/CD31(-), SCA-1(+)/CD45(-)/CD31(-) and SCA-1(+)/CD45(-)/CD31(+). These subgroup cells and unselected mBMSCs were injected into infarcted mouse via tail vein. Echocardiographic heart function measurement and in vivo DiR-labeled stem cells imaging were performed at 48 h after injection. In situ C-kit (a flag antigen of cardiac stem cells) and cardiac-specific differentiation antigen immunohistochemistry detection was made in the infarcted myocardium. RESULTS: The capacity of the SCA-1(+)/CD45(+)/CD31(+) cells on improving heart function was significantly higher than other cell groups (all P < 0.05). In vivo imaging showed that the mean fluorescence intensity of the SCA-1(+)/CD45(+)/CD31(+) cells was also higher than other cell groups (all P < 0.05). Number of cardiac stem cells in the infracted myocardium was significantly increased after the injection of all subgroup cells and unsorted mBMSCs cells for 48 h compared untreated infracted myocardium. The capacity of mobilizing cardiac stem cells is as follows: SCA-1(+)/CD45(+)/CD31(+) >SCA-1(+)/CD45(-)/CD31(+) >SCA-1(+)/CD45(-)/CD31(-) >SCA-1(+)/CD45(+)/CD31(-). CONCLUSION: The SCA-1(+)/CD45(+)/CD31(+) subgroups of mBMSCs exhibites the highest capacity to improve cardiac function after myocardial infarction and to mobilize autologous cardiac stem cells compared with other mBMSCs subgroups and unsorted mBMSCs cells.


Subject(s)
Mesenchymal Stem Cell Transplantation , Myocardial Infarction/surgery , Animals , Cells, Cultured , Disease Models, Animal , Mice , Mice, Inbred C57BL
13.
J Cardiothorac Surg ; 7: 27, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22443513

ABSTRACT

BACKGROUND: Tricuspid regurgitation (TR) is common in patients with mitral valve disease; however, there are no straightforward, rapidly determinably criteria available for deciding whether TR repair should be performed during mitral valve replacement. The aim of our retrospective study was to identify a simple and fast criterion for determining whether TR repair should be performed in patients undergoing mitral valve replacement. METHODS: We reviewed the records of patients who underwent mitral valve replacement with or without (control) TR repair (DeVega or Kay procedure) from January 2005 to December 2008. Preoperative and 2-year postoperative echocardiographic measurements included right ventricular and atrial diameter, interventricular septum size, TR severity, ejection fraction, and pulmonary artery pressure. RESULTS: A total of 89 patients were included (control, n = 50; DeVega, n = 27; Kay, n = 12). Demographic and clinical characteristics were similar between groups. Cardiac variables were similar between the DeVega and Kay groups. Right atrium and ventricular diameter and ejection fraction were significantly decreased postoperatively both in the control and operation (DeVega + Kay) group (P < 0.05). Pulmonary artery pressure was significantly decreased postoperatively in-operation groups (P < 0.05). Our findings indicate that surgical intervention for TR should be considered during mitral valve replacement if any of the following preoperative criteria are met: right atrial transverse diameter > 57 mm; right ventricular end-diastolic diameter > 55 mm; pulmonary artery pressure > 58 mmHg. CONCLUSIONS: Our findings suggest echocardiography may be used as a rapid and simple means of determining which patients require TR repair during mitral valve replacement.


Subject(s)
Cardiac Valve Annuloplasty , Decision Support Techniques , Heart Valve Prosthesis Implantation , Mitral Valve Insufficiency/surgery , Severity of Illness Index , Tricuspid Valve Insufficiency/surgery , Adult , Aged , Blood Pressure , Female , Follow-Up Studies , Heart Atria/diagnostic imaging , Heart Ventricles/diagnostic imaging , Humans , Male , Middle Aged , Mitral Valve Insufficiency/complications , Mitral Valve Insufficiency/diagnostic imaging , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/physiology , Retrospective Studies , Rheumatic Heart Disease/complications , Rheumatic Heart Disease/diagnostic imaging , Rheumatic Heart Disease/surgery , Treatment Outcome , Tricuspid Valve Insufficiency/complications , Tricuspid Valve Insufficiency/diagnostic imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL