Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930789

ABSTRACT

The aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) plays a pivotal role in the synthesis of renewable, biodegradable plastics and sustainable chemicals. Although supported gold nanoclusters (NCs) exhibit significant potential in this process, they often suffer from low selectivity. To address this challenge, a series of gold-M (M means Ni, Fe, Cu, and Pd) bimetallic NCs catalysts were designed and synthesized to facilitate the selective oxidation of HMF to FDCA. Our findings indicate that the introduction of doped metals, particularly Ni and Pd, not only improves the reaction rates for HMF tandem oxidation but also promotes high yields of FDCA. Various characterizations techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), in situ diffuse reflectance infrared Fourier transform spectroscopy of CO adsorption (CO-DRIFTS), and temperature-programmed desorption of oxygen (O2-TPD), were employed to scrutinize the structural and electronic properties of the prepared catalysts. Notably, an electronic effect was observed across the Au-based bimetallic catalysts, facilitating the activation of reactant molecules and enhancing the catalytic performance. This study provides valuable insights into the alloy effects, aiding in the development of highly efficient Au-based bimetallic catalysts for biomass conversions.

2.
Small ; : e2401103, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709231

ABSTRACT

The unsaturated amides are traditionally synthesized by acylation of carboxylic acids or hydration of nitrile compounds but are rarely investigated by hydroaminocarbonylation of alkynes using heterogeneous single-metal-site catalysts (HSMSCs). Herein, single-Pd-site catalysts supported on N-doping carbon (NC) with different nitrogen dimensions inherited from corresponding metal-organic-framework precursors are successfully synthesized. 2D NC-supported single-Pd-site (Pd1/NC-2D) exhibited the best performance with near 100% selectivity and 76% yield of acrylamide for acetylene hydroaminocarbonylation with better stability, superior to those of Pd1/NC-3D, single-metal-site/nanoparticle coexisting catalyst, and nanoparticle catalyst. The coordination environment and molecular evolution of the single-Pd-site during the process of acetylene hydroaminocarbonylation on Pd1/NC-2D are detailly illuminated by various characterizations and density functional theoretical calculations (DFT). DFT also showed the energy barrier of rate-determining step on Pd1/NC-2D is lower than that of Pd1/NC-3D. Furthermore, Pd1/NC-2D catalyst illustrated the general applicability of the hydroaminocarbonylation for various alkynes.

3.
Nat Commun ; 15(1): 2555, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519506

ABSTRACT

The direct conversion of low alkane such as ethane into high-value-added chemicals has remained a great challenge since the development of natural gas utilization. Herein, we achieve an efficient one-step conversion of ethane to C2 oxygenates on a Rh1/AC-SNI catalyst under a mild condition, which delivers a turnover frequency as high as 158.5 h-1. 18O isotope-GC-MS shows that the formation of ethanol and acetaldehyde follows two distinct pathways, where oxygen and water directly participate in the formation of ethanol and acetaldehyde, respectively. In situ formed intermediate species of oxygen radicals, hydroxyl radicals, vinyl groups, and ethyl groups are captured by laser desorption ionization/time of flight mass spectrometer. Density functional theory calculation shows that the activation barrier of the rate-determining step for acetaldehyde formation is much lower than that of ethanol, leading to the higher selectivity of acetaldehyde in all the products.

4.
Nat Commun ; 14(1): 7518, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980409

ABSTRACT

Supported metal clusters comprising of well-tailored low-nuclearity heteroatoms have great potentials in catalysis owing to the maximized exposure of active sites and metal synergy. However, atomically precise design of these architectures is still challenging for the lack of practical approaches. Here, we report a defect-driven nanostructuring strategy through combining defect engineering of nitrogen-doped carbons and sequential metal depositions to prepare a series of Pt and Mo ensembles ranging from single atoms to sub-nanoclusters. When applied in continuous gas-phase decomposition of formic acid, the low-nuclearity ensembles with unique Pt3Mo1N3 configuration deliver high-purity hydrogen at full conversion with unexpected high activity of 0.62 molHCOOH molPt-1 s-1 and remarkable stability, significantly outperforming the previously reported catalysts. The remarkable performance is rationalized by a joint operando dual-beam Fourier transformed infrared spectroscopy and density functional theory modeling study, pointing to the Pt-Mo synergy in creating a new reaction path for consecutive HCOOH dissociations.

5.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834306

ABSTRACT

Catalytic conversion of biomass-derived ethanol into n-butanol through Guerbet coupling reaction has become one of the key reactions in biomass valorization, thus attracting significant attention recently. Herein, a series of supported Cu catalysts derived from Ni-based hydrotalcite (HT) were prepared and performed in the continuous catalytic conversion of ethanol into butanol. Among the prepared catalysts, Cu/NiAlOx shows the best performance in terms of butanol selectivity and catalyst stability, with a sustained ethanol conversion of ~35% and butanol selectivity of 25% in a time-on-stream (TOS) of 110 h at 280 °C. While for the Cu/NiFeOx and Cu/NiCoOx, obvious catalyst deactivation and/or low butanol selectivity were obtained. Extensive characterization studies of the fresh and spent catalysts, i.e., X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Hydrogen temperature-programmed reduction (H2-TPR), reveal that the catalysts' deactivation is mainly caused by the support deconstruction during catalysis, which is highly dependent on the reducibility. Additionally, an appropriate acid-base property is pivotal for enhancing the product selectivity, which is beneficial for the key process of aldol-condensation to produce butanol.


Subject(s)
1-Butanol , Butanols , Ethanol/chemistry , Catalysis
6.
Small ; 19(52): e2305666, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635104

ABSTRACT

Tuning the coordination environment of the metal center in metal-nitrogen-carbon (M-N-C) single-atom catalysts via heteroatom-doping (oxygen, phosphorus, sulfur, etc.) is effective for promoting electrocatalytic CO2 reduction reaction (CO2 RR). However, few studies are investigated establishing efficient CO2 reduction by introducing boron (B) atoms to regulate the M-N-C structure. Herein, a B-C3 N4 self-sacrifice strategy is developed to synthesize B, N co-coordinated Ni single atom catalyst (Ni-BNC). X-ray absorption spectroscopy and high-angle annular dark field scanning transmission electron microscopy confirm the structure (Ni-N3 B/C). The Ni-BNC catalyst presents a maximum CO Faradaic efficiency (FECO ) of 98.8% and a large CO current density (jCO ) of -62.9 mA cm-2 at -0.75 and -1.05 V versus reversible hydrogen electrode, respectively. Furthermore, FECO could be maintained above 95% in a wide range of potential windows from -0.65 to -1.05 V. In situ experiments and density functional theory calculations demonstrate the Ni-BNC catalyst with B atoms coordinated to the central Ni atoms could significantly reduce the energy barrier for the conversion of *CO2 to *COOH, leading to excellent CO2 RR performance.

7.
Dalton Trans ; 52(33): 11571-11580, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37547989

ABSTRACT

Bimetallic interstitial compounds with unique geometric properties have attracted increasing attention in energy-related fields and diverse chemical transformations. Current synthesis of these compounds generally involves at least one wet-chemistry step with the use of various solvents to prepare the bimetallic precursors, and no universal protocols for different compositions are yet available. Herein, a novel synthetic strategy toward a platform of nickel-based bimetallic interstitial compounds with the formula MNi3Cx, M = Zn, In, and Ga, was developed based on a straightforward solid-state transformation, i.e., simply annealing the hydroxides of the respective metals in the presence of different carbon precursors (cyanamide, dicyandiamide, melamine, and urea) in a hydrogen stream. The key process parameters influencing the compositions of the final products are studied and the formation mechanism is discussed based on advanced characterization techniques. Powder X-ray diffraction reveals MNi3Cx as a single phase and electron microscopy shows that the MNi3Cx particles are covered with N-doped carbon shells. Extrapolation to other bimetallic interstitial compounds failed when following the above protocol, and the successful examples are linked to the formation of the corresponding bimetallic alloys in the absence of carbon precursors. When evaluated for the selective hydrogenation of dimethyl oxalate, both InNi3C0.5 and ZnNi3C0.7 show comparable high activity. While ZnNi3C0.7 delivers the highest selectivity for methyl glycolate, tunable methyl glycolate and ethylene glycol are formed on InNi3C0.5. In general, this facile solvent-free strategy affords an interesting scaffold to fabricate more advanced multi-metallic interstitial compounds with broad applications.

8.
Small ; 19(52): e2304423, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649188

ABSTRACT

Heteroatom-doping is an effective method for modifying the geometric symmetry of metal-nitrogen-carbon (M-N-C) single-atom catalysts and thereby tuning the electronic structure. Up to now, most of the current reports have concentrated on introducing heteroatoms into the highly symmetrical M-N4 structure. The coordination-unsaturated M-N2 structure is more sterically favorable for the insertion of alien atoms to optimize the electronic structure. Herein, a Ni-N2 catalyst with out-of-plane coordinated chlorine (Cl) atoms (Ni-N2 Cl/C) is successfully constructed on chlorine-functionalized carbon supports (C-Cl) for an efficient carbon dioxide reduction reaction (CO2 RR). Density functional theory calculations demonstrate that the prepared Ni-N2 Cl/C catalyst exhibits a higher capability in balancing COOH* formation and CO* desorption. In addition, in situ Raman spectra confirm that the lower CO binding energy on the Ni-N2 Cl/C facilitates CO escape, leading to excellent CO2 RR performance. A high CO Faradaic efficiency (FECO ) of more than 80% is achieved from -0.6 to -1.2 V versus reversible hydrogen electrode on the Ni-N2 Cl/C and it exhibits negligible FECO and current declination over a 40-h stability test. Furthermore, a high turnover frequency (TOF) value of 15 808 h-1 is obtained, which is more than ten times that of Ni-N2 /C (1476 h-1 ) without coordinated Cl atoms.

9.
Molecules ; 28(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570654

ABSTRACT

The catalytic upgrading of ethanol into butanol through the Guerbet coupling reaction has received increasing attention recently due to the sufficient supply of bioethanol and the versatile applications of butanol. In this work, four different supported Cu catalysts, i.e., Cu/Al2O3, Cu/NiO, Cu/Ni3AlOx, and Cu/Ni1AlOx (Ni2+/Al3+ molar ratios of 3 and 1), were applied to investigate the catalytic performances for ethanol conversion. From the results, Ni-containing catalysts exhibit better reactivity; Al-containing catalysts exhibit better stability; but in terms of ethanol conversion, butanol selectivity, and catalyst stability, a corporative effect between Ni-Al catalytic systems can be clearly observed. Combined characterizations such as XRD, TEM, XPS, H2-TPR, and CO2/NH3-TPD were applied to analyze the properties of different catalysts. Based on the results, Cu species provide the active sites for ethanol dehydrogenation/hydrogenation, and the support derived from Ni-Al-LDH supplies appropriate acid-base sites for the aldol condensation, contributing to the high butanol selectivity. In addition, catalysts with strong reducibility (i.e., Cu/NiO) may be easily deconstructed during catalysis, leading to fast deactivation of the catalysts in the Guerbet coupling process.

10.
Angew Chem Int Ed Engl ; 62(33): e202307570, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37310795

ABSTRACT

Heterogeneous single-metal-site catalysts usually suffer from poor stability, thereby limiting industrial applications. Dual Pd1 -Ru1 single-atom-sites supported on porous ionic polymers (Pd1 -Ru1 /PIPs) were constructed using a wetness impregnation method. The two isolated metal species in the form of a binuclear complex were immobilized on the cationic framework of PIPs through ionic bonds. Compared to the single Pd- or Ru-site catalyst, the dual single-atom system exhibits higher activity with 98 % acetylene conversion and near 100 % selectivity to dialkoxycarbonylation products, as well as better cycling stability for ten cycles without obvious decay. Based on DFT calculations, it was found that the single-Ru site exhibited a strong CO adsorption energy of -1.6 eV, leading to an increase in the local CO concentration of the catalyst. Notably, the Pd1 -Ru1 /PIPs catalyst had a much lower energy barrier of 2.49 eV compared to 3.87 eV of Pd1 /PIPs for the rate-determining step. The synergetic effect between neighboring single sites Pd1 and Ru1 not only enhanced the overall activity, but also stabilized PdII active sites. The discovery of synergetic effects between single sites can deepen our understanding of single-site catalysts at the molecular level.

11.
Chempluschem ; 88(6): e202300111, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37139714

ABSTRACT

Metal dispersion is a key concept in heterogeneous catalysis. The conventional approaches for its estimation strongly rely on chemisorption with different probe molecules. Albeit they can generally provide an 'averaged' value in a cost-effective manner, the inhomogeneity of the metal species and the complicated metal-support interactions pose formidable challenges for the accurate determination. Full metal species quantification (FMSQ) is introduced as an advanced method to depict the whole distribution of the metal species, ranging from single atoms to clusters and nanoparticles, in a practical solid catalyst. In this approach, automated analysis of massive high-angle annular dark field scanning transmission electron microscopic images is realized through algorithms specialized in combining the electron microscopy-based atom recognition statistics and deep learning-driven nanoparticle segmentation. In this Concept article, different techniques for determining the metal dispersion are discussed with their pros and cons. FMSQ is highlighted for it can circumvent the drawbacks of conventional approaches, allowing more reliable structure-performance relationships beyond the metal size.

12.
Angew Chem Int Ed Engl ; 62(30): e202304282, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37159106

ABSTRACT

Sulfur poisoning and regeneration are global challenges for metal catalysts even at the ppm level. The sulfur poisoning of single-metal-site catalysts and their regeneration is worthy of further study. Herein, sulfur poisoning and self-recovery are first presented on an industrialized single-Rh-site catalyst (Rh1 /POPs). A decreased turnover frequency of Rh1 /POPs from 4317 h-1 to 318 h-1 was observed in a 1000 ppm H2 S co-feed for ethylene hydroformylation, but it self-recovered to 4527 h-1 after withdrawal of H2 S, whereas the rhodium nanoparticles demonstrated poor activity and self-recovery ability. H2 S reduced the charge density of the single Rh atom and lowered its Gibbs free energy with the formation of inactive (SH)Rh(CO)(PPh3 -frame)2 , which could be regenerated to active HRh(CO)(PPh3 -frame)2 after withdrawing H2 S. The mechanism and the sulfur-related structure-activity relationship were highlighted. This work provides an understanding of heterogeneous ethylene hydroformylation and sulfur-poisoned regeneration in the science of single-atom catalysts.

13.
Chem Commun (Camb) ; 59(26): 3827-3837, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36883229

ABSTRACT

Fischer-Tropsch synthesis (FTS), which provides a green route to the production of clean fuels and fine chemicals, represents some significant applications of catalytic materials and processes in the chemical industry. FTS reactions show a diversity of mechanisms, involve various catalytic materials, and offer options for continuous investigation. Cobalt-based catalysts have been widely used for Fischer-Tropsch synthesis both in academia and in industry. This mini-review will focus on relevant research achievements in cobalt-based FTS catalysts by our group in the Dalian Institute of Chemical Physics (DICP). Specific contents will include the development of Co/Co2C-based nano-catalysts (i) for the highly selective synthesis of clean fuels over Co-based catalysts supported by carbon materials and (ii) for the synthesis of linear α-alcohols and olefins over Co-Co2C-based catalysts supported by carbon materials. The direct synthesis of linear α-alcohols from syngas using a Co-Co2C/AC catalyst is highlighted. The innovative work of FTS using activated carbon (AC)-supported Co/Co2C-based nano-catalysts could bring some insight into new FTS catalyst designs.

14.
Angew Chem Int Ed Engl ; 61(49): e202214166, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36253333

ABSTRACT

Identification of the roles of different active sites is vital for the rational design of catalysts. We present a cutting-edge strategy to discern the contributions of different single-atom gold species and nanoparticles in 1,3-butadiene hydrogenation, through coupling of advanced spectroscopic techniques, electron microscopy-based automated image analyses, and steady-state and kinetic studies. While all the carbon-hosted single gold atoms display negligible initial activity, the in situ-evolved gold nanoparticles are highly active. Full metal-species quantification is realized by combining electron-microscopy-based atom recognition statistics and deep-learning-driven nanoparticle segmentation algorithm, allowing the structure-activity correlations for the hybrid catalysts containing different Au architectures to be established. Surface exposure density of Au nanoparticles, as revealed by electron-microscopy-based statistics, is revealed as a new and reliable activity descriptor.

15.
Chem Commun (Camb) ; 58(72): 10016-10019, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35971977

ABSTRACT

A strategy of in situ depositing 2D COFs on heterogeneous catalysts was reported for the first time to suppress the agglomeration and sintering of the supported metal nanoparticles during hydrogenation processes. The COF-decorated nanocatalysts exhibited excellent stability in various hydrogenation reactions including the reduction of dimethyl oxalate (DMO), furfural, and other chemicals.

16.
Nanoscale ; 14(29): 10506-10513, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35830255

ABSTRACT

Tuning the coordination neighbors of the metal center is emerging as an elegant approach to manipulating the performance of supported single-atom catalysts in heterogeneous catalysis. Herein, atomically dispersed Pt species with different coordination neighbors hosted on nitrogen-doped carbon (NC) and graphitic carbon nitride (C3N4) are constructed through an impregnation-activation approach. Advanced characterization techniques including X-ray electron microscopy, X-ray absorption spectroscopy, and high angle annular dark-field scanning transmission electron microscopy reveal the different nature of active sites induced by the hosts: i.e., the Pt-Nx configuration in NC but both Pt-N and Pt-O coordinations in C3N4. H2-D2 exchange experiments and electron microscopy further evidence that Pt/NC exhibits a high propensity for H2 splitting and high thermal stability of the Pt species against agglomeration, whereas Pt/C3N4 cannot dissociate H2 and the Pt atoms easily aggregate in the reductive stream. Consequently, when applied in the selective hydrogenation of 1,3-butadiene, Pt/NC exhibits higher selectivity to butenes and excellent stability, but Pt/C3N4 behaves as a nanoparticle analogue favoring deep hydrogenation. The superior selectivity patterns of the single Pt atoms over Pt nanoparticles are rationalized by the inversed adsorption strength between the H2 and 1,3-butadiene molecules at different metal sites, which is substantiated by the kinetic studies.

17.
J Phys Chem Lett ; : 5131-5136, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35657666

ABSTRACT

Oxygen dissociation and activation on surfaces play a crucial role in heterogeneous catalysis and oxidation processes. In this study, we have conducted a series of scanning tunneling microscopy (STM) experiments combined with density functional theory calculation to investigate the oxidation process in a single crystal Co(0001) surface. For the first time, we show a comprehensive in situ STM study of the oxidation process of Co(0001) from an atomic point of view. With low O2 exposure at 90 K, chemisorbed oxygen pairs are observed showing a dumbbell-like STM feature. At a relatively higher temperature range of 160-250 K, a large-scale p(2 × 2)-O adlayer forms and the O adatoms show surprisingly high mobility. With the temperature of Co(0001) kept at ≥300 K, adsorption of oxygen leads to fast oxidation of the surface to amorphous cotton-like protrusions, which occur initially at the step/edge sites and interstitial defect sites.

18.
Chem Commun (Camb) ; 58(12): 1958-1961, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35043789

ABSTRACT

A P-modified Co/SiO2 catalyst was reported for the first time in the selective hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) reaction and the synthesized Co8P/SiO2 exhibited 94.6% conversion of DMO and 88.1% selectivity to MG during a 300 h continuous test. The doping element of P in the catalyst was indispensable and played an important role in improving the catalytic performance of the Co/SiO2 catalyst.

19.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34445372

ABSTRACT

The synthesis of ester compounds is one of the most important chemical processes. In this work, Zn-Mg-Al mixed oxides with different Zn2+/Mg2+ molar ratios were prepared via co-precipitation method and supported gold nanoclusters to study the direct oxidative esterification of aldehyde and alcohol in the presence of molecular oxygen. Various characterization techniques such as N2-physical adsorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and CO2 temperature programmed desorption (TPD) were utilized to analyze the structural and electronic properties. Based on the results, the presence of small amounts of Zn2+ ions (~5 wt.%) provoked a remarkable modification of the binary Mg-Al system, which enhanced the interaction between gold with the support and reduced the particle size of gold. For oxidative esterification reaction, the Au25/Zn0.05MgAl-400 catalyst showed the best performance, with the highest turnover frequency (TOF) of 1933 h-1. The active center was believed to be located at the interface between metallic gold with the support, where basic sites contribute a lot to transformation of the substrate.


Subject(s)
Aldehydes/chemistry , Aluminum Hydroxide/chemistry , Gold/chemistry , Magnesium Hydroxide/chemistry , Oxides/chemistry , Esterification , Metal Nanoparticles , Microscopy, Electron, Transmission , Oxidation-Reduction , Oxidative Stress , Particle Size , X-Ray Diffraction , Zinc
20.
Small ; 17(21): e2100372, 2021 May.
Article in English | MEDLINE | ID: mdl-33864356

ABSTRACT

Electrocatalysts for efficient production of ammonia from nitrogen reduction reaction (NRR) under ambient conditions are attracted growing interest in recent years, which demonstrate a great potential to replace the Haber-Bosch method which suffers the problems of the huge energy consumption and massive CO2 production. In this work, a novel electrocatalyst of Au25 -Cys-M is fabricated for NRR under ambient conditions, with transition metal ions (e.g., Mo6+ , Fe3+ , Co2+ , Ni2+ ) atomically decorated on Au25 nanoclusters via thiol bridging. The Au25 -Cys-Mo catalyst exhibits the highest Faradaic efficiency (26.5%) and NH3 yield (34.5 µg h-1  mgcat -1 ) in 0.1 m HCl solution. X-ray photoelectron spectroscopy analysis and high angle annular dark field image-scanning transmission electron microscopy characterization reveal that the electronic structure of Mo is optimized by forming the structure of Au-S-Mo and Mo acts as active sites for activating the nitrogen to promote the electrochemical production of ammonia. This work provides a new insight into the precise fabrication of efficient NRR electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...