Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Laryngoscope ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243224

ABSTRACT

OBJECTIVE: The purpose of this study was to assess the diagnostic performance of narrow-band imaging (NBI) in monitoring patients with head and neck carcinomas posttreatment and to compare it with that of white light endoscopy (WLE). DATA SOURCES: PubMed, Embase, Web of Science (WOS), Cochrane Library, China Biology Medicine disc (CBM disc), China National Knowledge Internet (CNKI), Wanfang Data, China Science and Technology Journal Database (CSTJ), Chinese Clinical Trial Register. REVIEW METHODS: Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), literature published before July 2024 was searched. Patients who underwent surgery, radiotherapy (RT), or chemo-RT for head and neck carcinomas with posttreatment follow-up using NBI were analyzed. The main outcomes were sensitivity, specificity, and diagnostic odds ratio (DOR) for NBI and WLE in posttreatment follow-up. RESULTS: The sensitivity, specificity, and DOR for NBI and WLE in posttreatment follow-up for head and neck carcinomas were 95% (95% confidence interval [CI]: 88%-98%), 96% (95% CI: 92%-98%), 433 (95% CI: 120-1560) and 72% (95% CI: 49%-87%), 72% (95% CI: 4%-99%), 7 (95% CI: 0-191). Additionally, the area under the curve (AUC) values for NBI and WLE were 0.99 (95% CI: 0.97-0.99) and 0.75 (95% CI: 0.71-0.79), respectively. The number of lesions and patients, treatment modality, follow-up time, disease, and endoscopic system might be sources of heterogeneity. CONCLUSION: Compared to WLE, NBI demonstrated superior diagnostic performance in follow-up patients with head and neck carcinoma posttreatment. NBI offers technical support and a clinical foundation for early detection of head and neck carcinoma recurrence. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

2.
World J Gastroenterol ; 30(28): 3393-3402, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39091711

ABSTRACT

BACKGROUND: Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide. Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy (PTCSL). AIM: To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation (PTOBF) technique guided by three-dimensional (3D) visualization. METHODS: This was a retrospective, single-center study analyzing, 140 patients who, between October 2016 and October 2023, underwent one-step PTCSL for hepatolithiasis. The patients were divided into two groups: The 3D-PTOBF group and the PTOBF group. Stone clearance on choledochoscopy, complications, and long-term clearance and recurrence rates were assessed. RESULTS: Age, total bilirubin, direct bilirubin, Child-Pugh class, and stone location were similar between the 2 groups, but there was a significant difference in bile duct strictures, with biliary strictures more common in the 3D-PTOBF group (P = 0.001). The median follow-up time was 55.0 (55.0, 512.0) days. The immediate stone clearance ratio (88.6% vs 27.1%, P = 0.000) and stricture resolution ratio (97.1% vs 78.6%, P = 0.001) in the 3D-PTOBF group were significantly greater than those in the PTOBF group. Postoperative complication (8.6% vs 41.4%, P = 0.000) and stone recurrence rates (7.1% vs 38.6%, P = 0.000) were significantly lower in the 3D-PTOBF group. CONCLUSION: Three-dimensional visualization helps make one-step PTCSL a safe, effective, and promising treatment for patients with complicated primary hepatolithiasis. The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis. This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.


Subject(s)
Imaging, Three-Dimensional , Lithotripsy , Liver Diseases , Recurrence , Humans , Male , Female , Middle Aged , Retrospective Studies , Lithotripsy/methods , Lithotripsy/adverse effects , Treatment Outcome , Aged , Imaging, Three-Dimensional/methods , Liver Diseases/diagnostic imaging , Liver Diseases/therapy , Adult , Lithiasis/surgery , Lithiasis/therapy , Lithiasis/diagnostic imaging , Endoscopy, Digestive System/methods , Postoperative Complications/etiology , Postoperative Complications/epidemiology
3.
Int J Biol Macromol ; 279(Pt 1): 135097, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197604

ABSTRACT

Hemoadhican (HD) is an exopolysaccharide with a branched structure that has been reported for its high hemostatic ability. In this study, a HD-based hemostatic sponge was prepared through ultrasonic dissolution and freeze-drying without using any cross-linking agent. The sponge could spontaneously cross-link using hydrogen bonds to form adhesive mud within 3 s upon contact with blood. This sponge-mud mixture adhered tightly to the wound tissue, forming a pressure-resistant physical barrier that captures and locks in blood cells and platelets. Simultaneously, the hydrophobic methyl groups of HD sponges repel blood inwardly, effectively sealing the wound. The brush-like structure of HD molecules was suspected to penetrate wet tissues through topological entanglement, thereby enhancing wet adhesion. Compared with gauze and gelatin sponges, HD sponges achieved more effective hemostasis in animal models using rat and rabbit femoral arteries. In particular, HD sponges showed excellent hemostasis in heparin-induced hemorrhage models in mice and pigs. The in vivo experiment demonstrated the excellent biosafety of the HD sponge. Conclusively, the HD sponge is a safe and efficient rapid hemostatic material that is expected to become an alternative material for clinical hemostatic procedures.

4.
Front Pharmacol ; 15: 1434136, 2024.
Article in English | MEDLINE | ID: mdl-39185320

ABSTRACT

Introduction: Overexposure to ultraviolet (UV) light is known to cause damage to the skin, leading to sunburn and photo-aging. Chemical sunscreen products may give rise to health risks including phototoxicity, photosensitivity, and photosensitivity. Natural polysaccharides have attracted considerable interests due to diverse biological activities. Methods: A novel polysaccharide isolated was purified and structurally characterized using chemical methods followed by HPLC, GLC-MS, as well as 1D and 2D NMR spectroscopy. The photoprotective effect of the EPS on UVB-induced damage was assessed in vitro using cultured keratinocytes and in vivo using C57BL/6 mouse models. Results: The average molecular weight of the EPS was 5.48 × 106 Da, composed of glucose, mannose and galactose residues at a ratio of 2:2:1. The repeating units of the EPS were →3)-ß-D-Glcp (1→3) [ß-D-Galp (1→2)-α-D-Glcp (1→2)]-α-D-Manp (1→3)-α-D-Manp (1→. In cultured keratinocytes, the EPS reduced cytotoxicity and excessive ROS production induced by UVB irradiation. The EPS also exhibits an inhibitory effect on oxidative stress, inflammation, and collagen degradation found in the photodamage in mice. 1H NMR-based metabolomics analysis for skin suggested that the EPS partly reversed the shifts of metabolic profiles of the skin in UVB-exposed mice. Conclusion: The EPS exhibits skin photoprotective effects through regulating oxidative stress both in vivo and in vitro. Our findings highlight that the EPS is a potential candidate in sunscreen formulations for an efficient solution to UVB radiation.

5.
Mol Cancer ; 23(1): 141, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982480

ABSTRACT

BACKGROUND: The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS: We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS: Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION: Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.


Subject(s)
Disease Progression , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Proto-Oncogene Proteins c-myc , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Mice , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Cell Line, Tumor , Phosphofructokinase-1, Type C/metabolism , Phosphofructokinase-1, Type C/genetics , Cell Proliferation , Prognosis , Female , Male , Xenograft Model Antitumor Assays , Biomarkers, Tumor/metabolism
6.
J Colloid Interface Sci ; 675: 192-206, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38968636

ABSTRACT

Chemotherapy is a widely used cancer treatment, however, it can have notable side effects owing to the high-doses of drugs administered. Sonodynamic therapy (SDT) induced by sonosensitizers has emerged as a promising approach to treat cancer, however, there is limited research evaluating its therapeutic effects on human tumors. In this study, we introduced a dual therapy that combines low-dose chemotherapeutic drugs with enhanced sonodynamic therapy, utilizing barium titanate (BaTiO3, BTO) nanoparticles (NPs) as sonosensitizers to treat tumor organoids. We demonstrated that ultrasound could improve the cellular uptake of chemotherapy drugs, while the chemotherapeutic effect of the drugs made it easier for BTO NPs to enter tumor cells, and the dual therapy synergistically inhibited tumor cell viability. Moreover, different patient-derived tumor organoids exhibited different sensitivities to this therapy, highlighting the potential to evaluate individual responses to combination therapies prior to clinical intervention. Furthermore, this dual therapy exhibited therapeutic effects equivalent to those of high-dose chemotherapy drugs on drug-resistant tumor organoids and showed the potential to enhance the efficacy of killing drug-resistant tumors. In addition, the biosafety of the BTO NPs was successfully verified in live mice via oral administration. This evidence confirms the reliable and safe nature of the dual therapy approach, making it a feasible option for precise and personalized therapy in clinical applications.


Subject(s)
Antineoplastic Agents , Barium Compounds , Cell Survival , Organoids , Precision Medicine , Titanium , Humans , Organoids/drug effects , Organoids/metabolism , Animals , Titanium/chemistry , Titanium/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice , Barium Compounds/chemistry , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Ultrasonic Therapy , Nanoparticles/chemistry , Catalysis , Dose-Response Relationship, Drug , Particle Size , Cell Line, Tumor , Surface Properties , Cell Proliferation/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy
7.
J Biol Chem ; 300(7): 107425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823639

ABSTRACT

Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.


Subject(s)
Adenosine Deaminase , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gluconeogenesis , Animals , Male , Mice , Adenosine/metabolism , Adenosine Deaminase/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Insulin/metabolism , Liver/metabolism , Mice, Inbred C57BL , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
8.
BMC Plant Biol ; 24(1): 516, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851686

ABSTRACT

BACKGROUND: The influence of native secondary succession associated with anthropogenic disturbance on the biodiversity of the forests in subtropical China remains uncertain. In particular, the evolutionary response of small understory shrubs, particularly pioneer species inhabiting continuously disturbed habitats, to topographic heterogeneity and climate change is poorly understood. This study aimed to address this knowledge gap by focusing on the Gaultheria crenulata group, a clade of small pioneer shrubs in subtropical China. RESULTS: We examined the genetic structure and demographic history of all five species of the G. crenulata group with two maternally inherited chloroplast DNA (cpDNA) fragments and two biparentally inherited low-copy nuclear genes (LCG) over 89 natural populations. We found that the genetic differentiation of this group was influenced by the geomorphological boundary between different regions of China in association with Quaternary climatic events. Despite low overall genetic diversity, we observed an isolation-by-distance (IBD) pattern at a regional scale, rather than isolation-by-environment (IBE), which was attributed to ongoing human disturbance in the region. CONCLUSION: Our findings suggest that the genetic structure of the G. crenulata group reflects the interplay of geological topography, historical climates, and anthropogenic disturbance during the Pliocene-Pleistocene-Holocene periods in subtropical China. The observed IBD pattern, particularly prominent in western China, highlights the role of limited dispersal and gene flow, possibly influenced by physical barriers or decreased connectivity over geographic distance. Furthermore, the east-to-west trend of gene flow, potentially facilitated by the East Asian monsoon system, underscores the complex interplay of biotic and abiotic factors shaping the genetic dynamics of pioneer species in subtropical China's secondary forests. These findings can be used to assess the impact of environmental changes on the adaptation and persistence of biodiversity in subtropical forest ecosystems.


Subject(s)
Forests , Genetic Variation , China , DNA, Chloroplast/genetics , Population Dynamics , Biodiversity , Gene Flow
9.
Nanomaterials (Basel) ; 14(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38921912

ABSTRACT

Hydrogen energy, known for its high energy density, environmental friendliness, and renewability, stands out as a promising alternative to fossil fuels. However, its broader application is limited by the challenge of efficient and safe storage. In this context, solid-state hydrogen storage using nanomaterials has emerged as a viable solution to the drawbacks of traditional storage methods. This comprehensive review delves into the recent advancements in nanomaterials for solid-state hydrogen storage, elucidating the fundamental principles and mechanisms, highlighting significant material systems, and exploring the strategies of surface and interface engineering alongside catalytic enhancement. We also address the primary challenges and provide future perspectives on the development of nanomaterial-based hydrogen storage technologies. Key discussions include the role of nanomaterial size effects, surface modifications, nanocomposites, and nanocatalysts in optimizing storage performance.

10.
Int J Surg ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905504

ABSTRACT

BACKGROUD: Endoscopic thyroidectomy (ET) and robotic thyroidectomy (RT) yield similar perioperative outcomes. This study investigated how the learning curve (LC) affects perioperative outcomes between ET and RT, identifying factors that influence the LC. MATERIALS AND METHODS: Two researchers individually searched PubMed, EMBASE, Web of Science, and Cochrane Library for relevant studies published until February 2024. The Newcastle-Ottawa Scale assessed study quality. Random effects model was used to compute the odds ratio and weighted mean difference (WMD). Poisson regression comparison of the number of surgeries (NLC) was required for ET and RT to reach the stable stage of the LC. Heterogeneity was measured using Cochran's Q. Publication bias was tested using funnel plots, and sensitivity analysis assessed findings robustness. Subgroup analysis was done by operation type and patient characteristics. RESULTS: This meta-analysis involved 33 studies. The drainage volume of ET was higher than that of RT (WMD=-17.56 [30.22, -4.49]). After reaching the NLC, the operation time of ET and RT was shortened (ET: WMD=28.15[18.04, 38.26]; RT: WMD=38.53[29.20, 47.86]). Other perioperative outcomes also improved to varying degrees. Notably, RT showed more refined central lymph node resection(5.67 vs. 4.71), less intraoperative bleeding (16.56 mL vs. 42.30 mL), and incidence of transient recurrent laryngeal nerve injury(24.59 vs. 26.77). The NLC of RT was smaller than that of ET(Incidence-rate ratios [IRR]=0.64[0.57, 0.72]). CUSUM analysis (ET: IRR=0.84[0.72, 0.99]; RT: IRR=0.55[0.44, 0.69]) or a smaller number of respondents (ET: IRR=0.26[0.15, 0.46]; RT: IRR=0.51[0.41, 0.63]) was associated with smaller NLC. In RT, transoral approach (IRR=2.73[1.96, 4.50]; IRR=2.48[1.61, 3.84]) and retroauricular approach (RAA) (IRR=2.13[1.26, 3.60]; IRR=1.78[1.04, 3.05]) had smaller NLC compared to bilateral axillo-breast and transaxillary approach (TAA). In ET, the NLC of RAA was smaller than that of TAA (IRR=1.61[1.04, 2.51]), breast approach(IRR=1.67[1.06, 2.64]), and subclavian approach(IRR=1.80[1.03, 3.14]). CONCLUSIONS: Rich surgical experience can improve surgical results of ET and RT. After reaching the NLC, the perioperative outcomes of RT are better than those of ET. Study subjects, surgical approaches, and analysis methods can affect NLC.

11.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893327

ABSTRACT

Magnesium-based hydrogen storage materials have garnered significant attention due to their high hydrogen storage capacity, abundance, and low cost. However, the slow kinetics and high desorption temperature of magnesium hydride hinder its practical application. Various preparation methods have been developed to improve the hydrogen storage properties of magnesium-based materials. This review comprehensively summarizes the recent advances in the preparation methods of magnesium-based hydrogen storage materials, including mechanical ball milling, methanol-wrapped chemical vapor deposition, plasma-assisted ball milling, organic ligand-assisted synthesis, and other emerging methods. The principles, processes, key parameters, and modification strategies of each method are discussed in detail, along with representative research cases. Furthermore, the advantages and disadvantages of different preparation methods are compared and evaluated, and their influence on hydrogen storage properties is analyzed. The practical application potential of these methods is also assessed, considering factors such as hydrogen storage performance, scalability, and cost-effectiveness. Finally, the existing challenges and future research directions in this field are outlined, emphasizing the need for further development of high-performance and cost-effective magnesium-based hydrogen storage materials for clean energy applications. This review provides valuable insights and references for researchers working on the development of advanced magnesium-based hydrogen storage technologies.

12.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893401

ABSTRACT

Magnesium-based hydrogen storage alloys have attracted significant attention as promising materials for solid-state hydrogen storage due to their high hydrogen storage capacity, abundant reserves, low cost, and reversibility. However, the widespread application of these alloys is hindered by several challenges, including slow hydrogen absorption/desorption kinetics, high thermodynamic stability of magnesium hydride, and limited cycle life. This comprehensive review provides an in-depth overview of the recent advances in magnesium-based hydrogen storage alloys, covering their fundamental properties, synthesis methods, modification strategies, hydrogen storage performance, and potential applications. The review discusses the thermodynamic and kinetic properties of magnesium-based alloys, as well as the effects of alloying, nanostructuring, and surface modification on their hydrogen storage performance. The hydrogen absorption/desorption properties of different magnesium-based alloy systems are compared, and the influence of various modification strategies on these properties is examined. The review also explores the potential applications of magnesium-based hydrogen storage alloys, including mobile and stationary hydrogen storage, rechargeable batteries, and thermal energy storage. Finally, the current challenges and future research directions in this field are discussed, highlighting the need for fundamental understanding of hydrogen storage mechanisms, development of novel alloy compositions, optimization of modification strategies, integration of magnesium-based alloys into hydrogen storage systems, and collaboration between academia and industry.

13.
Materials (Basel) ; 17(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893774

ABSTRACT

Mg-based materials have been widely studied as potential hydrogen storage media due to their high theoretical hydrogen capacity, low cost, and abundant reserves. However, the sluggish hydrogen absorption/desorption kinetics and high thermodynamic stability of Mg-based hydrides have hindered their practical application. Ball milling has emerged as a versatile and effective technique to synthesize and modify nanostructured Mg-based hydrides with enhanced hydrogen storage properties. This review provides a comprehensive summary of the state-of-the-art progress in the ball milling of Mg-based hydrogen storage materials. The synthesis mechanisms, microstructural evolution, and hydrogen storage properties of nanocrystalline and amorphous Mg-based hydrides prepared via ball milling are systematically reviewed. The effects of various catalytic additives, including transition metals, metal oxides, carbon materials, and metal halides, on the kinetics and thermodynamics of Mg-based hydrides are discussed in detail. Furthermore, the strategies for synthesizing nanocomposite Mg-based hydrides via ball milling with other hydrides, MOFs, and carbon scaffolds are highlighted, with an emphasis on the importance of nanoconfinement and interfacial effects. Finally, the challenges and future perspectives of ball-milled Mg-based hydrides for practical on-board hydrogen storage applications are outlined. This review aims to provide valuable insights and guidance for the development of advanced Mg-based hydrogen storage materials with superior performance.

14.
Analyst ; 149(11): 3195-3203, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38651605

ABSTRACT

Extracellular vesicles (EVs) originating from cancer cells incorporate various critical biomolecules that can aid in early cancer diagnosis. However, the rapid analysis of these micro vesicles remains challenging due to their nano-scale size and overlapping dimensions, hindering sufficient capture in terms of quantity and purity. In this study, an acoustofluidic device was developed to enhance the yield of immune-captured EVs. The channel of the device was modified with degradable gelatin nanoparticles (∼220 nm) to increase the surface roughness, and subsequently treated with CD63 antibodies. The acoustic-induced streaming would prolong the rotation time of the EVs in the targeted continuous flow area, improving their aggregation towards the surrounding pillars and subsequent capture by the specific CD63 antibodies. Consequently, the capture efficiency of the device was improved when the signal was on, as evidenced by enhanced fluorescence intensity in the main channel. It is demonstrated that the acoustofluidic device could enhance the immune capture of EVs through acoustic mixing, showcasing great potential in the rapid and fast detection of EVs in liquid biopsy applications.


Subject(s)
Extracellular Vesicles , Gelatin , Nanoparticles , Tetraspanin 30 , Gelatin/chemistry , Extracellular Vesicles/chemistry , Extracellular Vesicles/immunology , Nanoparticles/chemistry , Humans , Tetraspanin 30/metabolism , Acoustics , Lab-On-A-Chip Devices
15.
Molecules ; 29(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675587

ABSTRACT

Solid-state hydrogen storage technology has emerged as a disruptive solution to the "last mile" challenge in large-scale hydrogen energy applications, garnering significant global research attention. This paper systematically reviews the Chinese research progress in solid-state hydrogen storage material systems, thermodynamic mechanisms, and system integration. It also quantitatively assesses the market potential of solid-state hydrogen storage across four major application scenarios: on-board hydrogen storage, hydrogen refueling stations, backup power supplies, and power grid peak shaving. Furthermore, it analyzes the bottlenecks and challenges in industrialization related to key materials, testing standards, and innovation platforms. While acknowledging that the cost and performance of solid-state hydrogen storage are not yet fully competitive, the paper highlights its unique advantages of high safety, energy density, and potentially lower costs, showing promise in new energy vehicles and distributed energy fields. Breakthroughs in new hydrogen storage materials like magnesium-based and vanadium-based materials, coupled with improved standards, specifications, and innovation mechanisms, are expected to propel solid-state hydrogen storage into a mainstream technology within 10-15 years, with a market scale exceeding USD 14.3 billion. To accelerate the leapfrog development of China's solid-state hydrogen storage industry, increased investment in basic research, focused efforts on key core technologies, and streamlining the industry chain from materials to systems are recommended. This includes addressing challenges in passenger vehicles, commercial vehicles, and hydrogen refueling stations, and building a collaborative innovation ecosystem involving government, industry, academia, research, finance, and intermediary entities to support the achievement of carbon peak and neutrality goals and foster a clean, low-carbon, safe, and efficient modern energy system.

16.
J Exp Clin Cancer Res ; 43(1): 112, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38610018

ABSTRACT

BACKGROUND: The dysregulated mechanistic target of rapamycin complex 1 (mTORC1) signaling plays a critical role in ferroptosis resistance and tumorigenesis. However, the precise underlying mechanisms still need to be fully understood. METHODS: Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) expression in mTORC1-activated mouse embryonic fibroblasts, cancer cells, and laryngeal squamous cell carcinoma (LSCC) clinical samples was examined by quantitative real-time PCR (qRT-PCR), western blotting, immunofluorescence (IF), and immunohistochemistry. Extensive in vitro and in vivo experiments were carried out to determine the role of ERO1α and its downstream target, member 11 of the solute carrier family 7 (SLC7A11), in mTORC1-mediated cell proliferation, angiogenesis, ferroptosis resistance, and tumor growth. The regulatory mechanism of ERO1α on SLC7A11 was investigated via RNA-sequencing, a cytokine array, an enzyme-linked immunosorbent assay, qRT-PCR, western blotting, IF, a luciferase reporter assay, and a chromatin immunoprecipitation assay. The combined therapeutic effect of ERO1α inhibition and the ferroptosis inducer imidazole ketone erastin (IKE) on mTORC1-activated cells was evaluated using cell line-derived xenografts, LSCC organoids, and LSCC patient-derived xenograft models. RESULTS: ERO1α is a functional downstream target of mTORC1. Elevated ERO1α induced ferroptosis resistance and exerted pro-oncogenic roles in mTORC1-activated cells via upregulation of SLC7A11. Mechanically, ERO1α stimulated the transcription of SLC7A11 by activating the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, ERO1α inhibition combined with treatment using the ferroptosis inducer IKE exhibited synergistic antitumor effects on mTORC1-activated tumors. CONCLUSIONS: The ERO1α/IL-6/STAT3/SLC7A11 pathway is crucial for mTORC1-mediated ferroptosis resistance and tumor growth, and combining ERO1α inhibition with ferroptosis inducers is a novel and effective treatment for mTORC1-related tumors.


Subject(s)
Ferroptosis , Animals , Mice , Humans , Up-Regulation , Interleukin-6 , Fibroblasts , Cell Transformation, Neoplastic , Amino Acid Transport System y+/genetics
17.
Redox Biol ; 71: 103100, 2024 May.
Article in English | MEDLINE | ID: mdl-38484644

ABSTRACT

Th2-high asthma is characterized by elevated levels of type 2 cytokines, such as interleukin 13 (IL-13), and its prevalence has been increasing worldwide. Ferroptosis, a recently discovered type of programmed cell death, is involved in the pathological process of Th2-high asthma; however, the underlying mechanisms remain incompletely understood. In this study, we demonstrated that the serum level of malondialdehyde (MDA), an index of lipid peroxidation, positively correlated with IL-13 level and negatively correlated with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. Furthermore, we showed that IL-13 facilitates ferroptosis by upregulating of suppressor of cytokine signaling 1 (SOCS1) through analyzing immortalized airway epithelial cells, human airway organoids, and the ovalbumin (OVA)-challenged asthma model. We identified that signal transducer and activator of transcription 6 (STAT6) promotes the transcription of SOCS1 upon IL-13 stimulation. Moreover, SOCS1, an E3 ubiquitin ligase, was found to bind to solute carrier family 7 member 11 (SLC7A11) and catalyze its ubiquitinated degradation, thereby promoting ferroptosis in airway epithelial cells. Last, we found that inhibiting SOCS1 can decrease ferroptosis in airway epithelial cells and alleviate airway hyperresponsiveness (AHR) in OVA-challenged wide-type mice, while SOCS1 overexpression exacerbated the above in OVA-challenged IL-13-knockout mice. Our findings reveal that the IL-13/STAT6/SOCS1/SLC7A11 pathway is a novel molecular mechanism for ferroptosis in Th2-high asthma, confirming that targeting ferroptosis in airway epithelial cells is a potential therapeutic strategy for Th2-high asthma.


Subject(s)
Asthma , Interleukin-13 , Animals , Humans , Mice , Amino Acid Transport System y+ , Asthma/genetics , Asthma/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Lung/metabolism , Mice, Inbred BALB C , Ovalbumin/metabolism , Ovalbumin/therapeutic use , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 1 Protein/therapeutic use , Suppressor of Cytokine Signaling Proteins/metabolism , Th2 Cells/metabolism , Th2 Cells/pathology
18.
World J Gastrointest Oncol ; 16(2): 414-435, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38425399

ABSTRACT

BACKGROUND: Aberrant methylation is common during the initiation and progression of colorectal cancer (CRC), and detecting these changes that occur during early adenoma (ADE) formation and CRC progression has clinical value. AIM: To identify potential DNA methylation markers specific to ADE and CRC. METHODS: Here, we performed SeqCap targeted bisulfite sequencing and RNA-seq analysis of colorectal ADE and CRC samples to profile the epigenomic-transcriptomic landscape. RESULTS: Comparing 22 CRC and 25 ADE samples, global methylation was higher in the former, but both showed similar methylation patterns regarding differentially methylated gene positions, chromatin signatures, and repeated elements. High-grade CRC tended to exhibit elevated methylation levels in gene promoter regions compared to those in low-grade CRC. Combined with RNA-seq gene expression data, we identified 14 methylation-regulated differentially expressed genes, of which only AGTR1 and NECAB1 methylation had prognostic significance. CONCLUSION: Our results suggest that genome-wide alterations in DNA methylation occur during the early stages of CRC and demonstrate the methylation signatures associated with colorectal ADEs and CRC, suggesting prognostic biomarkers for CRC.

19.
J Biophotonics ; 17(5): e202300484, 2024 May.
Article in English | MEDLINE | ID: mdl-38297446

ABSTRACT

Infectious diseases caused by bacterial pathogens pose a significant public health threat, emphasizing the need for swift and accurate bacterial species detection methods. Hyperspectral microscopic imaging (HMI) offers nondestructive, rapid, and data-rich advantages, making it a promising tool for microbial detection. In this research, we present a highly compatible and cost-effective approach to extend a standard biomicroscope system into a hyperspectral biomicroscope using a prism-grating-prism configuration. Using this prototype, we generate 600 hyperspectral data cubes for Listeria, Bacillus typhi, Bacillus pestis, and Bacillus anthracis. Additionally, we propose a Transformer-based classification network that achieves a 99.44% accuracy in classifying these infectious pathogens, outperforming traditional methods. Our results suggest that the successful combination of HMI and the optimized Transformer-based classification network highlights the potential for rapid and precise detection of infectious disease pathogens .


Subject(s)
Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Hyperspectral Imaging , Bacteria/isolation & purification , Bacteria/classification , Microscopy
20.
Sci Rep ; 14(1): 4166, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378791

ABSTRACT

In light of the prevalent issues concerning the mechanical grading of fresh tea leaves, characterized by high damage rates and poor accuracy, as well as the limited grading precision through the integration of machine vision and machine learning (ML) algorithms, this study presents an innovative approach for classifying the quality grade of fresh tea leaves. This approach leverages an integration of image recognition and deep learning (DL) algorithm to accurately classify tea leaves' grades by identifying distinct bud and leaf combinations. The method begins by acquiring separate images of orderly scattered and randomly stacked fresh tea leaves. These images undergo data augmentation techniques, such as rotation, flipping, and contrast adjustment, to form the scattered and stacked tea leaves datasets. Subsequently, the YOLOv8x model was enhanced by Space pyramid pooling improvements (SPPCSPC) and the concentration-based attention module (CBAM). The established YOLOv8x-SPPCSPC-CBAM model is evaluated by comparing it with popular DL models, including Faster R-CNN, YOLOv5x, and YOLOv8x. The experimental findings reveal that the YOLOv8x-SPPCSPC-CBAM model delivers the most impressive results. For the scattered tea leaves, the mean average precision, precision, recall, and number of images processed per second rates of 98.2%, 95.8%, 96.7%, and 2.77, respectively, while for stacked tea leaves, they are 99.1%, 99.1%, 97.7% and 2.35, respectively. This study provides a robust framework for accurately classifying the quality grade of fresh tea leaves.


Subject(s)
Algorithms , Machine Learning , Mental Recall , Plant Leaves , Tea
SELECTION OF CITATIONS
SEARCH DETAIL