Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
J Mol Recognit ; 36(2): e2996, 2023 02.
Article in English | MEDLINE | ID: mdl-36175369

ABSTRACT

Chloride intracellular channel proteins (CLICs) display ubiquitous expression, with each member exhibiting specific subcellular localisation. While all CLICs, except CLIC3, exhibit a highly conserved putative nuclear localisation sequence (NLS), only CLIC1, CLIC3 and CLIC4 exist within the nucleus. The CLIC4 NLS, 199-KVVAKKYR-206, appears crucial for nuclear entry and interacts with mouse nuclear import mediator Impα isoform 1, omitting the IBB domain (mImpα1ΔIBB). The essential nature of the basic residues in the CLIC4 NLS has been established by the fact that mutating out these residues inhibits nuclear import, which in turn is linked to cutaneous squamous cell cancer. Given the conservation of the CLIC NLS, CLIC1 likely follows a similar import pathway to CLIC4. Peptides of the CLIC1 (Pep1; Pep1_S C/S mutant) and CLIC4 (Pep4) NLSs were designed to examine binding to human Impα isoform 1, omitting the IBB domain (hImpα1ΔIBB). Molecular docking indicated that the core CLIC NLS region (KKYR) forms a similar binding pattern to both mImpα1ΔIBB and hImpα1ΔIBB. Fluorescence quenching demonstrated that Pep1_S (Kd ≈ 237 µM) and Pep4 (Kd ≈ 317 µM) bind hImpα1ΔIBB weakly. Isothermal titration calorimetry confirmed the weak binding interaction between Pep4 and hImpα1ΔIBB (Kd ≈ 130 µM) and the presence of a proton-linked effect. This weak interaction may be due to regions distal from the CLIC NLS needed to stabilise and strengthen hImpα1ΔIBB binding. Additionally, this NLS may preferentially bind another hImpα isoform with different flexibility properties.


Subject(s)
Chlorides , alpha Karyopherins , Animals , Mice , Humans , Active Transport, Cell Nucleus , alpha Karyopherins/chemistry , alpha Karyopherins/metabolism , Chlorides/metabolism , Amino Acid Sequence , Molecular Docking Simulation , Cell Nucleus/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism
2.
Mol Biochem Parasitol ; 240: 111319, 2020 11.
Article in English | MEDLINE | ID: mdl-32961204

ABSTRACT

Schistosoma japonicum glutathione transferase (Sj26GST), an enzyme central to detoxification of electrophilic compounds in the parasite, is upregulated in response to drug treatment. Therefore, Sj26GST may serve as a potential therapeutic target for the treatment of schistosomiasis. Herewith, we describe the structural basis of inhibition of Sj26GST by ellagic acid (EA). Using 1-chloro-2,4-dinitrobenzene and reduced glutathione (GSH) as Sj26GST substrates, EA was shown to inhibit Sj26GST activity by 66 % with an IC50 of 2.4 µM. Fluorescence spectroscopy showed that EA altered the polarity of the environment of intrinsic tryptophan and that EA decreased (in a dose-dependent manner) the interaction between Sj26GST and 8-Anilino-1-naphthalenesulfonate (ANS), which is a known GST H-site ligand. Thermodynamic studies indicated that the interaction between Sj26GST and EA is spontaneous (ΔG = -29.88 ± 0.07 kJ/mol), enthalpically-driven (ΔH = -9.48 ± 0.42 kJ/mol) with a favourable entropic change (ΔS = 20.40 ± 0.08 kJ/mol/K), and with a stoichiometry of four EA molecules bound per Sj26GST dimer. The 1.53 Å-resolution Sj26GST crystal structure (P 21 21 21 space group) complexed with GSH and EA shows that EA binds primarily at the dimer interface, stabilised largely by Van der Waal forces and H-bonding. Besides, EA bound near the H-site and less than 3.5 Å from the ε-NH2 of the γ-glutamyl moiety of GSH, in each subunit.


Subject(s)
Enzyme Inhibitors/chemistry , Glutathione Transferase/chemistry , Helminth Proteins/chemistry , Schistosoma japonicum/enzymology , Animals , Calorimetry , Chemical Phenomena , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Helminth Proteins/antagonists & inhibitors , Kinetics , Ligands , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Schistosoma japonicum/drug effects , Structure-Activity Relationship , Thermodynamics
3.
Antivir Ther ; 24(5): 333-342, 2019.
Article in English | MEDLINE | ID: mdl-30958309

ABSTRACT

BACKGROUND: Protease inhibitors form the main component of second-line antiretroviral treatment in South Africa. Despite their efficacy, mutations arising within the HIV-1 gag and protease coding regions contribute to the development of resistance against this class of drug. In this paper we investigate a South African HIV-1 subtype C Gag-protease that contains a hinge region mutation and insertion (N37T↑V). METHODS: In vitro single-cycle drug susceptibility and viral replication capacity assays were performed on W1201i, a wild-type reference isolate (MJ4) and a chimeric construct (MJ4GagN37T↑VPR). Additionally, enzyme assays were performed on the N37T↑V protease and a wild-type reference protease. RESULTS: W1201i showed a small (threefold), but significant (P<0.0001) reduction in drug susceptibility to darunavir compared with MJ4. Substitution of W1201i-Gag with MJ4-Gag resulted in an additional small (twofold), but significant (P<0.01) reduction in susceptibility to lopinavir and atazanavir. The W1201i pseudovirus had a significantly (P<0.01) reduced replication capacity (16.4%) compared with the MJ4. However, this was dramatically increased to 164% (P<0.05) when W1201i-Gag was substituted with MJ4-Gag. Furthermore, the N37T↑V protease displayed reduced catalytic processing compared with the SK154 protease. CONCLUSIONS: Collectively, these data suggest that the N37T↑V mutation and insertion increases viral infectivity and decreases drug susceptibility. These variations are classified as secondary mutations, and indirectly impact inhibitor binding, enzyme fitness and enzyme stability. Additionally, polymorphisms arising in Gag can modify the impact of protease with regards to viral replication and susceptibility to protease inhibitors.


Subject(s)
Drug Resistance, Viral , Genetic Variation , Genotype , HIV Infections/virology , HIV Protease/genetics , HIV-1/drug effects , HIV-1/physiology , Virus Replication , Amino Acid Sequence , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Protease/chemistry , Humans , Microbial Sensitivity Tests , Models, Molecular , Phenotype , Structure-Activity Relationship
4.
Biochem J ; 476(2): 375-384, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30573649

ABSTRACT

HIV protease is essential for processing the Gag polyprotein to produce infectious virions and is a major target in antiretroviral therapy. We have identified an unusual HIV-1 subtype C variant that contains insertions of leucine and asparagine (L38↑N↑L) in the hinge region of protease at position 38. This was isolated from a protease inhibitor naïve infant. Isothermal titration calorimetry showed that 10% less of L38↑N↑L protease was in the active conformation as compared with a reference strain. L38↑N↑L protease displayed a ±50% reduction in KM and kcat The catalytic efficiency (kcat/KM) of L38↑N↑L protease was not significantly different from that of wild type although there was a 42% reduction in specific activity for the variant. An in vitro phenotypic assay showed the L38↑N↑L protease to be susceptible to lopinavir (LPV), atazanavir (ATV) and darunavir in the context of an unrelated Gag. However, in the presence of the related Gag, L38↑N↑L showed reduced susceptibility to darunavir while remaining susceptible to LPV and ATV. Furthermore, a reduction in viral replication capacity (RC) was observed in combination with the related Gag. The reduced susceptibility to darunavir and decrease in RC may be due to PTAPP duplication in the related Gag. The present study shows the importance of considering the Gag region when looking at drug susceptibility of HIV-1 protease variants.


Subject(s)
Darunavir/chemistry , HIV Protease Inhibitors/chemistry , HIV Protease/chemistry , HIV Protease/genetics , HIV-1 , Lopinavir/chemistry , Mutagenesis, Insertional , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics , Darunavir/pharmacology , HIV Infections/drug therapy , HIV Infections/enzymology , HIV Infections/genetics , HIV Protease/metabolism , HIV-1/enzymology , HIV-1/genetics , Humans , Lopinavir/pharmacology , gag Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , gag Gene Products, Human Immunodeficiency Virus/metabolism
5.
Cell Rep ; 25(11): 3123-3135.e6, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30540944

ABSTRACT

Antibodies that bind residue K169 in the V2 region of the HIV-1 envelope correlated with reduced risk of infection in the RV144 vaccine trial but were restricted to two ED-motif-encoding light chain genes. Here, we identify an HIV-infected donor with high-titer V2 peptide-binding antibodies and isolate two antibody lineages (CAP228-16H/19F and CAP228-3D) that mediate potent antibody-dependent cell-mediated cytotoxicity (ADCC). Both lineages use the IGHV5-51 heavy chain germline gene, similar to the RV144 antibody CH58, but one lineage (CAP228-16H/19F) uses a light chain without the ED motif. A cocrystal structure of CAP228-16H bound to a V2 peptide identified a IGLV3-21 gene-encoded DDxD motif that is used to bind K169, with a mechanism that allows CAP228-16H to recognize more globally relevant V2 immunotypes. Overall, these data further our understanding of the development of cross-reactive, V2-binding, antiviral antibodies and effectively expand the human light chain repertoire able to respond to RV144-like immunogens.


Subject(s)
AIDS Vaccines/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Infections/immunology , HIV Infections/virology , Immunoglobulin Light Chains/metabolism , Lysine/metabolism , Alleles , Amino Acid Sequence , HIV Antibodies/isolation & purification , HIV Envelope Protein gp120/metabolism , Humans , Immunoglobulin Light Chains/chemistry , Models, Molecular , Peptides/metabolism , Protein Binding , Tissue Donors
6.
PLoS One ; 13(12): e0209373, 2018.
Article in English | MEDLINE | ID: mdl-30571707

ABSTRACT

Rabies is an ancient and neglected zoonotic disease caused by the rabies virus, a neurotropic RNA virus that belongs to the Rhabdoviridae family, genus Lyssavirus. It remains an important public health problem as there are cost and health concerns imposed by the current human post exposure prophylaxis therapy. The use of monoclonal antibodies (mAbs) is therefore an attractive alternative. Rabies mostly affects people that reside in resource-limited areas where there are occasional failures in the cold-chain. These environmental changes may upset the stability of the mAbs. This study focused on mAbs 62-71-3 and E559; their structures, responses to freeze/thaw (F/T) and exposure to reactive oxygen species were therefore studied with the aid of a wide range of biophysical and in silico techniques in order to elucidate their stability and identify aggregation prone regions. E559 was found to be less stable than 62-71-3. The complementarity determining regions (CDR) contributed the most to its instability, more specifically: peptides 99EIWD102 and 92ATSPYT97 found in CDR3, Trp33 found in CDR1 and the oxidised Met34. The constant region "158SWNSGALTGHTFPAVL175" was also flagged by the special aggregation propensity (SAP) tool and F/T experiments to be highly prone to aggregation. The E559 peptides "4LQESGSVL11 from the heavy chain and 4LTQSPSSL11 from the light chain, were also highly affected by F/T. These residues may serve as good candidates for mutation, in the aim to bring forward more stable therapeutic antibodies, thus paving a way to a more safe and efficacious antibody-based cocktail treatment against rabies.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Viral/chemistry , Rabies virus/immunology , Rabies/therapy , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibodies, Viral/therapeutic use , Cold Temperature/adverse effects , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Computer Simulation , Drug Stability , Drug Storage , Humans , Neutralization Tests , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Engineering/methods , Proteolysis , Rabies/immunology , Rabies/virology , Reactive Oxygen Species/chemistry , Nicotiana/genetics , Nicotiana/metabolism
7.
Proteins ; 86(11): 1189-1201, 2018 11.
Article in English | MEDLINE | ID: mdl-30183110

ABSTRACT

Plasmodium falciparum, the main agent of malaria expresses six members of the heat shock protein 70 (Hsp70) family. Hsp70s serve as protein folding facilitators in the cell. Amongst the six Hsp70 species that P. falciparum expresses, Hsp70-x (PfHsp70-x), is partially exported to the host red blood cell where it is implicated in host cell remodeling. Nearly 500 proteins of parasitic origin are exported to the parasite-infected red blood cell (RBC) along with PfHsp70-x. The role of PfHsp70-x in the infected human RBC remains largely unclear. One of the defining features of PfHsp70-x is the presence of EEVN residues at its C-terminus. In this regard, PfHsp70-x resembles canonical eukaryotic cytosol-localized Hsp70s which possess EEVD residues at their C-termini in place of the EEVN residues associated with PfHsp70-x. The EEVD residues of eukaryotic Hsp70s facilitate their interaction with co-chaperones. Characterization of the role of the EEVN residues of PfHsp70-x could provide insights into the function of this protein. In the current study, we expressed and purified recombinant PfHsp70-x (full length) and its EEVN minus form (PfHsp70-xT ). We then conducted structure- function assays towards establishing the role of the EEVN motif of PfHsp70-x. Our findings suggest that the EEVN residues of PfHsp70-x are important for its ATPase activity and chaperone function. Furthermore, the EEVN residues are crucial for the direct interaction between PfHsp70-x and human Hsp70-Hsp90 organizing protein (hHop) in vitro. Hop facilitates functional cooperation between Hsp70 and Hsp90. However, it remains to be established if PfHsp70-x and hHsp90 cooperate in vivo.


Subject(s)
HSP70 Heat-Shock Proteins/chemistry , Malaria, Falciparum/parasitology , Plasmodium falciparum/chemistry , Protozoan Proteins/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Amino Acid Motifs , HSP70 Heat-Shock Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protein Binding , Protein Folding , Protein Interaction Maps , Protozoan Proteins/metabolism , Tumor Suppressor Proteins/metabolism
8.
Arch Biochem Biophys ; 657: 56-64, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30227110

ABSTRACT

FOXP2 is a transcriptional repressor involved in development of the human brain and is the first gene product to be linked to the evolution of human speech. FOXP2 belongs to the FOX superfamily of proteins that share a common winged helix DNA binding domain - the forkhead domain. A divalent cation (Mg2+ or Ca2+) has been identified bound to a group of highly conserved residues in a number of FOX forkhead domain crystal structures. This work aims to investigate the role of the conserved divalent cation binding site by studying both the structure and DNA-binding function of the FOXP2 forkhead domain when in the presence and absence of either cation (Mg2+or Ca2+). The presence of the cations does not significantly alter the structure of the apo-FOXP2 forkhead domain. However, when in the presence of a cognate oligonucleotide sequence, differences are observed upon addition of divalent cation. These differences occur both in the structure and in the thermodynamic DNA binding signature of the FOXP2 forkhead domain. The incorporation of molecular dynamics simulations together with the experimental data provides us with sufficient insight so as to propose a possible role for divalent cations in the regulation of DNA binding to FOX transcription factors.


Subject(s)
Calcium/metabolism , DNA/metabolism , Forkhead Transcription Factors/metabolism , Magnesium/metabolism , Amino Acid Sequence , Binding Sites , Escherichia coli/genetics , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/genetics , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Structure, Tertiary , Sequence Alignment , Thermodynamics
9.
Protein J ; 37(4): 369-379, 2018 08.
Article in English | MEDLINE | ID: mdl-29869126

ABSTRACT

In recent years, various strategies have been used to overexpress and purify HIV-1 protease because it is an essential drug target in anti-retroviral therapy. Obtaining sufficient quantities of the enzyme, however, remains challenging. Overexpression of large quantities is prevented due to the enzyme's autolytic nature and its inherent cytotoxicity in Escherichia coli cells. Here, we describe a novel HIV-1 protease purification method using a thioredoxin-hexahistidine fusion system for the wild-type and two variant proteases. The fusion proteases were overexpressed in E. coli and recovered by immobilised metal ion affinity chromatography. The proteases were cleaved from the fusion constructs using thrombin. When compared to the standard overexpression and purification protocol in use in our laboratory, the expression of the fusion-derived wild-type protease was increased from 0.83 to 2.5 mg/l of culture medium. The expression levels of the two variant proteases ranged from 1.5 to 2 mg/l of culture medium. The fusion wild-type and variant proteases were inactive before the cleavage of the thioredoxin-hexahistidine fusion tag as no enzymatic activity was observed. The proteases were, however, active after cleavage of the tag. The novel thioredoxin-hexahistidine fusion system, therefore, enables the successful overexpression and purification of catalytically active HIV-1 proteases.


Subject(s)
Chromatography, Affinity/methods , Genetic Variation , HIV Protease/classification , HIV Protease/metabolism , HIV-1/enzymology , Histidine/chemistry , Oligopeptides/chemistry , Recombinant Fusion Proteins/metabolism , Thioredoxins/chemistry , Amino Acid Sequence , HIV Protease/genetics , HIV Protease/isolation & purification , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Sequence Homology
10.
Biol Chem ; 399(8): 881-893, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29878882

ABSTRACT

Forkhead box (FOX) proteins are a ubiquitously expressed family of transcription factors that regulate the development and differentiation of a wide range of tissues in animals. The FOXP subfamily members are the only known FOX proteins capable of forming domain-swapped forkhead domain (FHD) dimers. This is proposed to be due to an evolutionary mutation (P539A) that lies in the FHD hinge loop, a key region thought to fine-tune DNA sequence specificity in the FOX transcription factors. Considering the importance of the hinge loop in both the dimerisation mechanism of the FOXP FHD and its role in tuning DNA binding, a detailed investigation into the implications of mutations within this region could provide important insight into the evolution of the FOX family. Isothermal titration calorimetry and hydrogen exchange mass spectroscopy were used to study the thermodynamic binding signature and changes in backbone dynamics of FOXP2 FHD DNA binding. Dual luciferase reporter assays were performed to study the effect that the hinge-loop mutation has on FOXP2 transcriptional activity in vivo. We demonstrate that the change in dynamics of the hinge-loop region of FOXP2 alters the energetics and mechanism of DNA binding highlighting the critical role of hinge loop mutations in regulating DNA binding characteristics of the FOX proteins.


Subject(s)
DNA/chemistry , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Transcription, Genetic , Binding Sites , DNA/metabolism , Humans
11.
Protein J ; 37(4): 311-323, 2018 08.
Article in English | MEDLINE | ID: mdl-29845391

ABSTRACT

FOXP2 is a transcription factor expressed in multiple tissues during embryonic development. FOXP2 regulates transcription by binding to DNA at its DNA binding domain, the forkhead domain (FHD) through the recognition helix. Ser557 is a residue located within the recognition helix that has the potential to become phosphorylated posttranslationally. In this study we investigated whether phosphorylation of Ser557 can influence the structure and DNA binding of the FOXP2 FHD. We did this by constructing S557E, a phosphomimetic mutant, and comparing its behaviour to the wild type. The mutation did not affect the secondary or tertiary structure of the protein although it did decrease the propensity of the FOXP2 FHD to form dimers. Most notably, the mutation showed significantly reduced DNA binding compared to the wild type as detected using electrophoretic mobility shift assays. Molecular docking was also performed in which the wild type, phosphomimetic mutant and phosphorylated wild-type were docked to DNA and their interactions with DNA were compared. These results indicated that the wild type forms more interactions with the DNA and that the phosphomimetic mutant as well as the phosphorylated wild type did not associate as favourably with the DNA. This indicates that phosphorylation of Ser557 could disrupt DNA binding likely due to electrostatic and steric hindrance. This suggests that phosphorylation of Ser557 in the FOXP2 FHD could act as a control mechanism for FOXP2 and ultimately could be involved in regulation of transcription.


Subject(s)
DNA/metabolism , Forkhead Transcription Factors/metabolism , Mutation , Serine/metabolism , DNA/chemistry , DNA/genetics , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/genetics , Humans , Molecular Docking Simulation , Molecular Mimicry , Phosphorylation , Protein Conformation , Protein Domains , Serine/chemistry , Serine/genetics
12.
J Mol Graph Model ; 82: 1-11, 2018 06.
Article in English | MEDLINE | ID: mdl-29625416

ABSTRACT

HIV-1 protease is an important antiretroviral drug target due to its key role in viral maturation. Computational models have been successfully used in the past to understand the dynamics of HIV-1 protease variants. We performed molecular dynamics simulations and induced fit docking on a wild-type South African HIV-1 subtype C protease and an N37T↑V hinge region variant. The simulations were initiated in a cubic cell universe and run in explicit solvent, with the wild-type and variant proteases in the fully closed conformation and under periodic boundary conditions. The trajectory for each simulation totalled 20 ns. The results indicate that the N37T↑V hinge region mutation and insertion alter the molecular dynamics of the flap and hinge regions when compared to the wild-type protease. Specifically, the destabilisation of the hinge region allowed a larger and protracted opening of the flap region due to the formation of two key hinge/cantilever salt-bridges, which are absent in the wild-type protease. Domain-domain anti-correlation was observed between the flap and hinge region for both models. However, the N37T↑V variant protease displayed a lower degree of anti-correlation. The mutations affected the thermodynamic landscape of inhibitor binding as there were fewer observable chemical contacts between the N37T↑V variant protease and lopinavir, atazanavir and darunavir, respectively. These data elucidate the biophysical basis for the selection of hinge region insertion mutations by the HI virus.


Subject(s)
Genetic Variation , HIV Protease/chemistry , HIV Protease/genetics , HIV-1/enzymology , HIV-1/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Amino Acid Sequence , HIV Protease/metabolism , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Ligands , Molecular Conformation , Protein Binding , Protein Interaction Domains and Motifs , Quantitative Structure-Activity Relationship , South Africa
13.
J Mol Recognit ; 31(7): e2708, 2018 07.
Article in English | MEDLINE | ID: mdl-29572982

ABSTRACT

The ß-subunit of the human eukaryotic elongation factor 1 complex (heEF1ß) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α- and γ-subunits (eEF1γ). To biophysically characterize heEF1ß, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL-heEF1ß), N-terminus (NT-heEF1ß), and the C-terminus (CT-heEF1ß) regions of the protein. Our results suggest that heEF1ß is predominantly alpha-helical and possesses an accessible hydrophobic cavity in the CT-heEF1ß. Both FL-heEF1ß and NT-heEF1ß form dimers of size 62 and 30 kDa, respectively, but the CT-heEF1ß is monomeric. FL-heEF1ß interacts with the N-terminus glutathione transferase-like domain of heEF1γ (NT-heEF1γ) to form a 195-kDa complex or a 230-kDa complex in the presence of oxidized glutathione. On the other hand, NT-heEF1ß forms a 170-kDa complex with NT-heEF1γ and a high molecular weight aggregate of size greater than 670 kDa. Surface plasmon resonance analysis confirmed that (by fitting the Langmuir 1:1 model) FL-heEF1ß associated with monomeric or dimeric NT-heEF1γ at a rapid rate and slowly dissociated, suggesting strong functional affinity (KD  = 9.6 nM for monomeric or 11.3 nM for dimeric NT-heEF1γ). We postulate that the N-terminus region of heEF1ß may be responsible for its dimerization and the C-terminus region of heEF1ß modulates the formation of an ordered heEF1ß-γ oligomer, a structure that may be essential in the elongation step of eukaryotic protein biosynthesis.


Subject(s)
Glutathione/chemistry , Peptide Elongation Factor 1/chemistry , Protein Subunits/chemistry , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutathione/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Molecular , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Protein Binding , Protein Biosynthesis , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Surface Plasmon Resonance
14.
Molecules ; 22(12)2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29206141

ABSTRACT

Heat shock proteins (Hsps), amongst them, Hsp70 and Hsp90 families, serve mainly as facilitators of protein folding (molecular chaperones) of the cell. The Hsp70 family of proteins represents one of the most important molecular chaperones in the cell. Plasmodium falciparum, the main agent of malaria, expresses six Hsp70 isoforms. Two (PfHsp70-1 and PfHsp70-z) of these localize to the parasite cytosol. PHsp70-1 is known to occur in a functional complex with another chaperone, PfHsp90 via a co-chaperone, P. falciparum Hsp70-Hsp90 organising protein (PfHop). (-)-Epigallocatechin-3-gallate (EGCG) is a green tea constituent that is thought to possess antiplasmodial activity. However, the mechanism by which EGCG exhibits antiplasmodial activity is not fully understood. A previous study proposed that EGCG binds to the N-terminal ATPase domain of Hsp70. In the current study, we overexpressed and purified recombinant forms of two P. falciparum cytosol localized Hsp70s (PfHsp70-1 and PfHsp70-z), and PfHop, a co-chaperone of PfHsp70-1. Using the surface plasmon resonance approach, we demonstrated that EGCG directly binds to the two Hsp70s. We further observed that binding of EGCG to the two proteins resulted in secondary and tertiary conformational changes. In addition, EGCG inhibited the ATPase and chaperone function of the two proteins. Furthermore, EGCG abrogated association of the two Hsp70s with their functional partners. Using parasites cultured in vitro at the blood stages, we observed that 2.9 µM EGCG suppressed 50% P. falciparum parasite growth (IC50). Our findings demonstrate that EGCG directly binds to PfHsp70-1 and PfHsp70-z to inhibit both the ATPase and chaperone functions of the proteins. Our study constitutes the first direct evidence suggesting that the antiplasmodial activity of EGCG is at least in part accounted for by its inhibition of Hsp70 function.


Subject(s)
Antimalarials/pharmacology , Catechin/analogs & derivatives , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Antimalarials/chemistry , Binding Sites , Catechin/chemistry , Catechin/pharmacology , Cloning, Molecular , Cytosol/drug effects , Cytosol/metabolism , Erythrocytes/drug effects , Erythrocytes/parasitology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Inhibitory Concentration 50 , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
15.
Biophys Chem ; 224: 40-48, 2017 05.
Article in English | MEDLINE | ID: mdl-28318907

ABSTRACT

Glutathione S-transferase A3-3 is the most catalytically efficient steroid isomerase enzyme known in humans, transforming Δ5-androstene-3-17-dione into Δ4-androstene-3-17-dione. GSTA3-3 catalyzes this reaction with ten-fold greater efficiency than GSTA1-1, its closest competitor in the Alpha class of GSTs. In order to examine the differences between Alpha class GSTs and to better elucidate the mechanism of GSTA3-3 the roles of Tyr9 and Arg15 were examined. Tyr9 is the major catalytic residue of Alpha class GSTs and Arg15 is proposed to be catalytically important to GSTA3-3 but never before experimentally examined. While the structure and stability of the Alpha class enzymes are highly comparable, subtle differences at the G-site of the enzymes account for GSTA3-3 having a ten-fold greater affinity for the substrate GSH. Y9F and R15L mutations, singly or together, have no effect on the structure and stability of GSTA3-3 (the same effect they have on GSTA1-1) despite the R15L mutation removing an interdomain salt-bridge at the active site. Hydrogen-deuterium exchange mass spectrometry also revealed that neither mutation had a significant effect on the conformational dynamics of GSTA3-3. The R15L and Y9F mutations are equally important to the specific activity of the steroid isomerase reaction; however, Arg15 is more important for lowering the pKa of GSH. Lowering the pKa of GSH being how GSTs catalyze their reactions. Additionally, there is evidence to suggest that Arg15 is integral to allowing GSTA3-3 to differentiate between Δ5-androstene-3-17-dione and Δ4-androstene-3-17-dione, indicating that Arg15 is a more important active-site residue than previously known.


Subject(s)
Arginine/genetics , Glutathione Transferase/chemistry , Tyrosine/genetics , Catalysis , Catalytic Domain , Glutathione/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Molecular Dynamics Simulation , Molecular Structure , Mutagenesis, Site-Directed , Protein Conformation , Protein Stability , Substrate Specificity
16.
J Biochem ; 162(1): 45-54, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28104810

ABSTRACT

FOXP2 is a member of the P subfamily of FOX transcription factors, the DNA-binding domain of which is the winged helix forkhead domain (FHD). In this work we show that the FOXP2 FHD is able to bind to various DNA sequences, including a novel sequence identified in this work, with different affinities and rates as detected using surface plasmon resonance. Combining the experimental work with molecular docking, we show that high-affinity sequences remain bound to the protein for longer, form a greater number of interactions with the protein and induce a greater structural change in the protein than low-affinity sequences. We propose a binding model for the FOXP2 FHD that involves three types of binding sequence: low affinity sites which allow for rapid scanning of the genome by the protein in a partially unstructured state; moderate affinity sites which serve to locate the protein near target sites and high-affinity sites which secure the protein to the DNA and induce a conformational change necessary for functional binding and the possible initiation of downstream transcriptional events.


Subject(s)
DNA/genetics , DNA/metabolism , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Base Sequence , Binding Sites , Humans , Models, Molecular , Protein Domains , Surface Plasmon Resonance
17.
Protein J ; 35(6): 448-458, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27844275

ABSTRACT

The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d = 115 µM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.


Subject(s)
Glutathione Disulfide/chemistry , Glutathione/analogs & derivatives , Glutathione/chemistry , Peptide Elongation Factor 1/chemistry , Calorimetry , Gene Expression , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Humans , Hydrogen Bonding , Kinetics , Ligands , Molecular Dynamics Simulation , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structural Homology, Protein , Temperature , Thermodynamics
18.
Virology ; 498: 250-256, 2016 11.
Article in English | MEDLINE | ID: mdl-27614701

ABSTRACT

Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members.


Subject(s)
Cross Reactions/immunology , Glycoproteins/immunology , Lyssavirus/immunology , Lyssavirus/metabolism , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology , Viral Proteins/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Conserved Sequence , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Glycoproteins/chemistry , Glycoproteins/genetics , Lyssavirus/classification , Lyssavirus/genetics , Models, Molecular , Neutralization Tests , Phylogeny , Protein Conformation , Viral Proteins/chemistry , Viral Proteins/genetics
19.
Cell Stress Chaperones ; 21(3): 499-513, 2016 May.
Article in English | MEDLINE | ID: mdl-26894764

ABSTRACT

The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.


Subject(s)
HSP110 Heat-Shock Proteins/genetics , HSP72 Heat-Shock Proteins/metabolism , Malaria, Falciparum/genetics , Plasmodium falciparum/genetics , Adenosine Triphosphatases/genetics , HSP110 Heat-Shock Proteins/metabolism , Humans , Malaria, Falciparum/parasitology , Molecular Chaperones , Nucleotides/genetics , Plasmodium falciparum/pathogenicity , Protein Domains/genetics , Protein Folding
20.
PLoS One ; 10(6): e0129445, 2015.
Article in English | MEDLINE | ID: mdl-26083397

ABSTRACT

Six Hsp70-like genes are represented on the genome of Plasmodium falciparum. Of these two occur in the cytosol: P. falciparum Hsp70-z (PfHsp70-z) and PfHsp70-1. PfHsp70-1 is a well characterised canonical Hsp70 that facilitates protein quality control and is crucial for the development of malaria parasites. There is very little known about PfHsp70-z. However, PfHsp70-z is known to be essential and is implicated in suppressing aggregation of asparagine-rich proteins of P. falciparum. In addition, its expression at the clinical stage of malaria correlates with disease prognosis. Based on structural evidence PfHsp70-z belongs to the Hsp110 family of proteins. Since Hsp110 proteins have been described as nucleotide exchange factors (NEFs) of their canonical Hsp70 counterparts, it has been speculated that PfHsp70-z may serve as a NEF of PfHsp70-1. In the current study, P. falciparum cells cultured in vitro were subjected to heat stress, triggering the enhanced expression of PfHsp70-z. Biochemical assays conducted using recombinant PfHsp70-z protein demonstrated that the protein is heat stable and possesses ATPase activity. Furthermore, we observed that PfHsp70-z is capable of self-association. The structural-functional features of PfHsp70-z provide further evidence for its role as a chaperone and possible nucleotide exchange factor of PfHsp70-1.


Subject(s)
HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Adenosine Triphosphatases/metabolism , Gene Expression , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/isolation & purification , Heat-Shock Response , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Protozoan Proteins/chemistry , Protozoan Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL