Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Control ; 31: 10732748241251571, 2024.
Article in English | MEDLINE | ID: mdl-38869038

ABSTRACT

OBJECTIVES: To determine the dysregulated signaling pathways of head and neck squamous cell carcinoma associated with circulating tumor cells (CTCs) via single-cell molecular characterization. INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC) has a significant global burden and is a disease with poor survival. Despite trials exploring new treatment modalities to improve disease control rates, the 5 year survival rate remains low at only 60%. Most cancer malignancies are reported to progress to a fatal phase due to the metastatic activity derived from treatment-resistant cancer cells, regarded as one of the most significant obstacles to develope effective cancer treatment options. However, the molecular profiles of cancer cells have not been thoroughly studied. METHODS: Here, we examined in-situ HNSCC tumors and pairwisely followed up with the downstream circulating tumor cells (CTCs)-based on the surrogate biomarkers to detect metastasis that is established in other cancers - not yet being fully adopted in HNSCC treatment algorithms. RESULTS: Specifically, we revealed metastatic HNSCC patients have complex CTCs that could be defined through gene expression and mutational gene profiling derived from completed single-cell RNASeq (scRNASeq) that served to confirm molecular pathways inherent in these CTCs. To enhance the reliability of our findings, we cross-validated those molecular profiles with results from previously published studies. CONCLUSION: Thus, we identified 5 dysregulated signaling pathways in CTCs to derive HNSCC biomarker panels for screening HNSCC in situ tumors.


ObjectivesInvestigating the dysregulated signaling pathways of head and neck squamous cell carcinoma (HNSCC) linked with circulating tumor cells (CTCs) using single-cell molecular characterization.IntroductionHNSCC poses a significant global health burden with poor survival rates despite advancements in treatment. Metastatic activity from treatment-resistant cancer cells remains a major challenge in developing effective treatments. However, the molecular profiles of cancer cells, particularly CTCs, are not well-understood.MethodsWe analyzed in-situ HNSCC tumors and corresponding CTCs using surrogate biomarkers to detect metastasis, a technique not widely used in HNSCC treatment protocols.ResultsOur study revealed complex CTCs in metastatic HNSCC patients characterized by gene expression and mutational gene profiling via single-cell RNASeq (scRNASeq). These profiles confirmed molecular pathways inherent in CTCs, further validated by previous research.ConclusionThrough our research, we identified five dysregulated signaling pathways in CTCs, suggesting potential biomarker panels for HNSCC screening in situ tumors.


Subject(s)
Head and Neck Neoplasms , Neoplastic Cells, Circulating , Signal Transduction , Single-Cell Analysis , Squamous Cell Carcinoma of Head and Neck , Humans , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/blood , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/metabolism , Single-Cell Analysis/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Male , Female , Gene Expression Profiling/methods , Middle Aged , Gene Expression Regulation, Neoplastic
2.
Adv Biol (Weinh) ; 6(9): e2200190, 2022 09.
Article in English | MEDLINE | ID: mdl-35925599

ABSTRACT

Oral squamous cell carcinoma (OSCC) patients suffer from poor survival due to metastasis or locoregional recurrence, processes that are both facilitated by perineural invasion (PNI). OSCC has higher rates of PNI than other cancer subtypes, with PNI present in 80% of tumors. Despite the impact of PNI on oral cancer prognosis and pain, little is known about the genes that drive PNI, which in turn drive pain, invasion, and metastasis. In this study, clinical data, preclinical, and in vitro models are leveraged to elucidate the role of neurotrophins in OSCC metastasis, PNI, and pain. The expression data in OSCC patients with metastasis, PNI, or pain demonstrate dysregulation of neurotrophin genes. TrkA and nerve growth factor receptor (NGFR) are focused, two receptors that are activated by NGF, a neurotrophin expressed at high levels in OSCC. It is demonstrated that targeted knockdown of these two receptors inhibits proliferation and invasion in an in vitro and preclinical model of OSCC, and metastasis, PNI, and pain. It is further determined that TrkA knockdown alone inhibits thermal hyperalgesia, whereas NGFR knockdown alone inhibits mechanical allodynia. Collectively the results highlight the ability of OSCC to co-opt different components of the neurotrophin pathway in metastasis, PNI, and pain.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Carcinoma, Squamous Cell/genetics , Humans , Mouth Neoplasms/genetics , Neoplasm Invasiveness/genetics , Neoplasm Recurrence, Local , Neoplastic Processes , Nerve Growth Factors , Nerve Tissue Proteins , Pain , Receptor Protein-Tyrosine Kinases , Receptor, Nerve Growth Factor , Receptor, trkA , Receptors, Nerve Growth Factor/genetics , Squamous Cell Carcinoma of Head and Neck
3.
Biomark Res ; 9(1): 90, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930473

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. METHODS: Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. RESULTS: There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). CONCLUSIONS: Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.

4.
Biomark Res ; 9(1): 42, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34090518

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a capricious cancer with poor survival rates, even for early-stage patients. There is a pressing need to develop more precise risk assessment methods to appropriately tailor clinical treatment. Genome-wide association studies have not produced a viable biomarker. However, these studies are limited by using heterogeneous cohorts, not focusing on methylation although OSCC is a heavily epigenetically-regulated cancer, and not combining molecular data with clinicopathologic data for risk prediction. In this study we focused on early-stage (I/II) OSCC and created a risk score called the REASON score, which combines clinicopathologic characteristics with a 12-gene methylation signature, to predict the risk of 5-year mortality. METHODS: We combined data from an internal cohort (n = 515) and The Cancer Genome Atlas (TCGA) cohort (n = 58). We collected clinicopathologic data from both cohorts to derive the non-molecular portion of the REASON score. We then analyzed the TCGA cohort DNA methylation data to derive the molecular portion of the risk score. RESULTS: 5-year disease specific survival was 63% for the internal cohort and 86% for the TCGA cohort. The clinicopathologic features with the highest predictive ability among the two the cohorts were age, race, sex, tobacco use, alcohol use, histologic grade, stage, perineural invasion (PNI), lymphovascular invasion (LVI), and margin status. This panel of 10 non-molecular features predicted 5-year mortality risk with a concordance (c)-index = 0.67. Our molecular panel consisted of a 12-gene methylation signature (i.e., HORMAD2, MYLK, GPR133, SOX8, TRPA1, ABCA2, HGFAC, MCPH1, WDR86, CACNA1H, RNF216, CCNJL), which had the most significant differential methylation between patients who survived vs. died by 5 years. All 12 genes have already been linked to survival in other cancers. Of the genes, only SOX8 was previously associated with OSCC; our study was the first to link the remaining 11 genes to OSCC survival. The combined molecular and non-molecular panel formed the REASON score, which predicted risk of death with a c-index = 0.915. CONCLUSIONS: The REASON score is a promising biomarker to predict risk of mortality in early-stage OSCC patients. Validation of the REASON score in a larger independent cohort is warranted.

5.
Int J Mol Sci ; 22(2)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445547

ABSTRACT

The present study explored the hypothesis that an adverse intrauterine environment caused by maternal undernutrition (MUN) acted through corticosteroid-dependent and -independent mechanisms to program lasting functional changes in the neonatal cerebrovasculature and vulnerability to mild hypoxic-ischemic (HI) injury. From day 10 of gestation until term, MUN and MUN-metyrapone (MUN-MET) group rats consumed a diet restricted to 50% of calories consumed by a pair-fed control; and on gestational day 11 through term, MUN-MET groups received drinking water containing MET (0.5 mg/mL), a corticosteroid synthesis inhibitor. P9/P10 pups underwent unilateral carotid ligation followed 24 h later by 1.5 h exposure to 8% oxygen (HI treatment). An ELISA quantified MUN-, MET-, and HI-induced changes in circulating levels of corticosterone. In P11/P12 pups, MUN programming promoted contractile differentiation in cerebrovascular smooth muscle as determined by confocal microscopy, modulated calcium-dependent contractility as revealed by cerebral artery myography, enhanced vasogenic edema formation as indicated by T2 MRI, and worsened neurobehavior MUN unmasked HI-induced improvements in open-field locomotion and in edema resolution, alterations in calcium-dependent contractility and promotion of contractile differentiation. Overall, MUN imposed multiple interdependent effects on cerebrovascular smooth muscle differentiation, contractility, edema formation, flow-metabolism coupling and neurobehavior through pathways that both required, and were independent of, gestational corticosteroids. In light of growing global patterns of food insecurity, the present study emphasizes that infants born from undernourished mothers may experience greater risk for developing neonatal cerebral edema and sensorimotor impairments possibly through programmed changes in neonatal cerebrovascular function.


Subject(s)
Cerebral Cortex/blood supply , Corticosterone/metabolism , Fetal Nutrition Disorders/etiology , Hypoxia-Ischemia, Brain/etiology , Hypoxia-Ischemia, Brain/metabolism , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects , Animals , Biomarkers , Corticosterone/blood , Disease Models, Animal , Disease Susceptibility , Female , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/pathology , Magnetic Resonance Imaging , Microscopy, Confocal , Pregnancy , Rats
6.
Sci Rep ; 10(1): 20832, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257729

ABSTRACT

Metastasis reduces survival in oral cancer patients and pain is their greatest complaint. We have shown previously that oral cancer metastasis and pain are controlled by the endothelin axis, which is a pathway comprised of the endothelin A and B receptors (ETAR and ETBR). In this study we focus on individual genes of the pathway, demonstrating that the endothelin axis genes are methylated and dysregulated in cancer tissue. Based on these findings in patients, we hypothesize that ETAR and ETBR play dichotomous roles in oral carcinogenesis and pain, such that ETAR activation and silenced ETBR expression result in increased carcinogenesis and pain. We test a treatment strategy that targets the dichotomous functions of the two receptors by inhibiting ETAR with macitentan, an ETAR antagonist approved for treatment of pulmonary hypertension, and re-expressing the ETBR gene with adenovirus transduction, and determine the treatment effect on cancer invasion (i.e., metastasis), proliferation and pain in vitro and in vivo. We demonstrate that combination treatment of macitentan and ETBR gene therapy inhibits invasion, but not proliferation, in cell culture and in a mouse model of tongue cancer. Furthermore, the treatment combination produces an antinociceptive effect through inhibition of endothelin-1 mediated neuronal activation, revealing the analgesic potential of macitentan. Our treatment approach targets a pathway shown to be dysregulated in oral cancer patients, using gene therapy and repurposing an available drug to effectively treat both oral cancer metastasis and pain in a preclinical model.


Subject(s)
Endothelins/genetics , Mouth Neoplasms/therapy , Neoplasm Metastasis/therapy , Adult , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Endothelins/metabolism , Endothelins/physiology , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mouth Neoplasms/metabolism , Neoplasm Invasiveness/genetics , Pain/metabolism , Pain/physiopathology , Pain Management/methods , Pyrimidines/pharmacology , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , Sulfonamides/pharmacology
7.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1093-R1104, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27707720

ABSTRACT

This study explored the hypothesis that intracerebral hemorrhage (ICH) promotes release of diffusible factors that can significantly influence the structure and function of cerebral arteries remote from the site of injury, through action on platelet-derived growth factor (PDGF) receptors. Four groups of adult male Sprague-Dawley rats were studied (n = 8 each): 1) sham; 2) sham + 60 mg/kg ip imatinib; 3) ICH (collagenase method); and 4) ICH + 60 mg/kg ip imatinib given 60 min after injury. At 24 h after injury, sham artery passive diameters (+3 mM EGTA) averaged 244 ± 7 µm (at 60 mmHg). ICH significantly increased passive diameters up to 6.4% and decreased compliance up to 42.5%. For both pressure- and potassium-induced contractions, ICH decreased calcium mobilization up to 26.2% and increased myofilament calcium sensitivity up to 48.4%. ICH reduced confocal colocalization of smooth muscle α-actin (αActin) with nonmuscle myosin heavy chain (MHC) and increased its colocalization with smooth muscle MHC, suggesting that ICH promoted contractile differentiation. ICH also enhanced colocalization of myosin light chain kinase (MLCK) with both αActin and regulatory 20-kDa myosin light chain. All effects of ICH on passive diameter, compliance, contractility, and contractile protein colocalization were significantly reduced or absent in arteries from animals treated with imatinib. These findings support the hypothesis that ICH promotes release into the cerebrospinal fluid of vasoactive factors that can diffuse to and promote activation of cerebrovascular PDGF receptors, thereby altering the structure, contractile protein organization, contractility, and smooth muscle phenotype of cerebral arteries remote from the site of hemorrhage.


Subject(s)
Cerebral Arteries/physiopathology , Cerebral Hemorrhage/physiopathology , Cerebrovascular Disorders/prevention & control , Cerebrovascular Disorders/physiopathology , Imatinib Mesylate/administration & dosage , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Animals , Cerebral Arteries/drug effects , Cerebral Hemorrhage/drug therapy , Cerebrovascular Circulation/drug effects , Dose-Response Relationship, Drug , Male , Phenotype , Rats , Rats, Sprague-Dawley , Receptors, Platelet-Derived Growth Factor/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...