Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Cell Signal ; : 111289, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971570

ABSTRACT

BACKGROUND: Skeletal muscle ischaemia-reperfusion injury (IRI) is a prevalent condition encountered in clinical practice, characterised by muscular dystrophy. Owing to limited treatment options and poor prognosis, it can lead to movement impairments, tissue damage, and disability. This study aimed to determine and verify the influence of transient receptor potential canonical 6 (TRPC6) on skeletal muscle IRI, and to explore the role of TRPC6 in the occurrence of skeletal muscle IRI and the signal transduction pathways activated by TRPC6 to provide novel insights for the treatment and intervention of skeletal muscle IRI. METHODS: In vivo ischaemia/reperfusion (I/R) and in vitro hypoxia/reoxygenation (H/R) models were established, and data were comprehensively analysed at histopathological, cellular, and molecular levels, along with the evaluation of the exercise capacity in mice. RESULTS: By comparing TRPC6 knockout mice with wild-type mice, we found that TRPC6 knockout of TRPC6 could reduced skeletal muscle injury after I/R or H/R, of skeletal muscle, so as therebyto restoringe some exercise capacity inof mice. TRPC6 knockdown can reduced Ca2+ overload in cells, therebyo reducinge apoptosis. In additionAdditionally, we also found that TRPC6 functionsis not only a key ion channel involved in skeletal muscle IRII/R injury, but also can affects Ca2+ levels and then phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway. by knocking downTherefore, knockdown of TRPC6, so as to alleviated the injury inducedcaused by skeletal muscle I/R or and H/R. CONCLUSIONS: These findingsdata indicate that the presence of TRPC6 exacerbatescan aggravate the injury of skeletal muscle injury after I/Rischemia/reperfusion, leading towhich not only causes Ca2+ overload and apoptosis., Additionally, it impairsbut also reduces the self- repair ability of cells by inhibiting the expression of the PI3K/Akt/mTOR signalling pathway. ETo exploringe the function and role of TRPC6 in skeletal muscle maycan presentprovide a novelew approachidea for the treatment of skeletal muscle IRIischemia/reperfusion injury.

2.
Korean J Intern Med ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38798045
3.
Vet Res ; 55(1): 68, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807225

ABSTRACT

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Release , rab GTP-Binding Proteins , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Swine , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Pseudorabies/virology , Virus Assembly/physiology , Swine Diseases/virology , Cell Line
7.
Ann Neurol ; 96(1): 194-203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38661030

ABSTRACT

OBJECTIVE: Primary angiitis of the central nervous system (PACNS) is a rare vasculitis restricted to the brain, spinal cord, and leptomeninges. This study aimed to describe the imaging characteristics of patients with small vessel PACNS (SV-PACNS) using 7 T magnetic resonance imaging (MRI). METHODS: This ongoing prospective observational cohort study included patients who met the Calabrese and Mallek criteria and underwent 7 T MRI scan. The MRI protocol includes T1-weighted magnetization-prepared rapid gradient echo imaging, T2 star weighted imaging, and susceptibility-weighted imaging. Two experienced readers independently reviewed the neuroimages. Clinical data were extracted from the electronic patient records. The findings were then applied to a cohort of patients with large vessel central nervous system (CNS) vasculitis. RESULTS: We included 21 patients with SV-PACNS from December 2021 to November 2023. Of these, 12 (57.14%) had cerebral cortical microhemorrhages with atrophy. The pattern with microhemorrhages was described in detail based on the gradient echo sequence, leading to the identification of what we have termed the "coral-like sign." The onset age of patients with coral-like sign (33.83 ± 9.93 years) appeared younger than that of patients without coral-like sign (42.11 ± 14.18 years) (P = 0.131). Furthermore, the cerebral lesions in patients with cortical microhemorrhagic SV-PACNS showed greater propensity toward bilateral lesions (P = 0.03). The coral-like sign was not observed in patients with large vessel CNS vasculitis. INTERPRETATION: The key characteristics of the coral-like sign represent cerebral cortical diffuse microhemorrhages with atrophy, which may be an important MRI pattern of SV-PACNS. ANN NEUROL 2024;96:194-203.


Subject(s)
Magnetic Resonance Imaging , Vasculitis, Central Nervous System , Humans , Male , Female , Vasculitis, Central Nervous System/diagnostic imaging , Vasculitis, Central Nervous System/pathology , Vasculitis, Central Nervous System/complications , Adult , Middle Aged , Prospective Studies , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Young Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cohort Studies , Adolescent
13.
Article in English | MEDLINE | ID: mdl-38289442

ABSTRACT

Time-of-death extrapolation has always been one of the most important issues in forensic practice. For a complicated case in which a corpse is destroyed with little evidence, judging the time of death of the deceased is a major challenge, which also enables criminals to escape legal sanctions. To find a method to roughly judge the time of death of a corpse with only a small amount of skin tissue, in this study, we established an early death model by using mice; furthermore, the postmortem interval was estimated by determining the protein and mRNA levels of Bax and Bcl-2 in the skin. In this process, 0 h after death was used as the control group, and the expression levels of Bax and Caspase-3 reached the maximum value at 8-12 h, while Bcl-2, as an inhibitor of apoptosis protein, peaked after 24 h. The mRNA expression levels of related proteins in postmortem skin tissues were also different. The results of these data indicate that the protein and mRNA levels of Bax and Bcl-2 in the skin have potential application in early time-of-death estimation.

14.
Mini Rev Med Chem ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38275028

ABSTRACT

Medicinal insects play an important role in the treatment of refractory diseases due to their unique and rich pharmacological activities. However, compared to plants, microorganisms, and marine organisms, medicinal insects have been largely ignored. Some small molecules isolated from insects are known to have defensive effects, but their majority roles remain unknown. In-depth research on the small molecules of medicinal insects has been conducted in recent years. Then alkaloids, dopamine derivatives, nucleoside derivatives, and other components are obtained. Among them, dopamine derivatives are a unique class of components from medicinal insects. Thus, we present a comprehensive overview of chemical structures and biological activities of dopamine derivatives from some medicinal insects, which will bring more attention to other researchers for further chemical and biological investigations on the unique dopamine derivatives as well as medicinal insects.

16.
Dig Liver Dis ; 56(3): 522-524, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38071179
SELECTION OF CITATIONS
SEARCH DETAIL
...