Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 920
Filter
1.
Food Chem ; 462: 141033, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217750

ABSTRACT

A rapid method was developed for determining the total flavonoid and protein content in Tartary buckwheat by employing near-infrared spectroscopy (NIRS) and various machine learning algorithms, including partial least squares regression (PLSR), support vector regression (SVR), and backpropagation neural network (BPNN). The RAW-SPA-CV-SVR model exhibited superior predictive accuracy for both Tartary and common buckwheat, with a high coefficient of determination (R2p = 0.9811) and a root mean squared error of prediction (RMSEP = 0.1071) for flavonoids, outperforming both PLSR and BPNN models. Additionally, the MMN-SPA-PSO-SVR model demonstrated exceptional performance in predicting protein content (R2p = 0.9247, RMSEP = 0.3906), enhancing the effectiveness of the MMN preprocessing technique for preserving the original data distribution. These findings indicate that the proposed methodology could efficiently assess buckwheat adulteration analysis. It can also provide new insights for the development of a promising method for quantifying food adulteration and controlling food quality.


Subject(s)
Fagopyrum , Flavonoids , Plant Proteins , Spectroscopy, Near-Infrared , Fagopyrum/chemistry , Spectroscopy, Near-Infrared/methods , Flavonoids/analysis , Flavonoids/chemistry , Plant Proteins/analysis , Plant Proteins/chemistry , Chemometrics/methods , Least-Squares Analysis , Neural Networks, Computer
2.
Proc Biol Sci ; 291(2032): 20241605, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39353560

ABSTRACT

Evolutionary rescue occurs when populations survive lethal environmental stresses through the rising and fixation of tolerant genotypes. Temperature has long been believed to determine the evolutionary speed of populations and species. Here, we suggest that warmer temperatures can facilitate evolutionary rescue. Moreover, with dispersal among habitats, the advantage in evolutionary rescue for warmer populations may cause a bias in habitat colonization dynamics towards the warm-to-cold direction. We experimentally tested these hypotheses with a model microbial system. Our first experiment showed that bacterial populations at warmer temperatures had a greater chance to evolve resistance and escape the fate of extinction under an antibiotic treatment. In the second experiment, metapopulations that consisted of warm and cold habitats were exposed to the antibiotic stress; local populations that went extinct might be recolonized, and such recolonization events were biased to the warm-to-cold direction. We also examined possible mechanisms underlying the temperature effect on the rapid evolution of resistance in our study system. Our results may help to understand the mechanisms of maintenance of biodiversity and patterns of gene flow among climatic regions, particularly in pest species subject to chemical control treatments.


Subject(s)
Biological Evolution , Ecosystem , Hot Temperature , Cold Temperature , Temperature
3.
J Agric Food Chem ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392110

ABSTRACT

Cascade conversion of chitin into soluble and functional chitooligosaccharides has gained great attention. However, the biotransformation route is still limited to the low catalytic performances of chitin deacetylases (CDAs) and complicated procedures. In this study, a CDA from Arthrobacter sp. Jub115 (ArCDA) was identified and characterized, which showed a higher catalytic stability than the reported CDAs, with residual activity of 80.49%, 71.12%, and 56.09% after incubation at 30, 35, and 40 °C for 24 h, respectively. Additionally, ArCDA was identified to have a broad substrate spectrum toward ß-chitin and N-acetyl chitooligosaccharides. Moreover, an engineered chitin-degrading bacteria (CDB) with cell-surface-displayed deacetylase ArCDA and chitinase SaChiB was constructed to simplify catalysis procedures, facilitating the chitobiose production of 294.30 ± 16.43 mg/L in 10 h. This study not only identified a CDA with the desirable catalytic performance but also provided a strategy for constructing CDB, facilitating the high-value utilization of chitin.

4.
J Mol Cell Biol ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367479

ABSTRACT

The transmembrane protein CD47, an innate immune checkpoint protein, plays a pivotal role in preventing healthy erythrocytes from immune clearance. Our study utilized stochastic optical-reconstruction microscopy (STORM) and single-molecule analysis to investigate the distribution of CD47 on the human erythrocyte membrane. Contrary to previous findings in mouse erythrocytes, we discovered that CD47 exists in randomly distributed monomers rather than in clusters across the human erythrocyte membrane. Using 2nd antibody-induced crosslinking, we found that CD47 aggregates into stable clusters within minutes. By comparing these STORM results with those of the fully mobile protein CD59 and the cytoskeleton-bound membrane protein glycophorin C under similar conditions, as well as devising two-color STORM co-labeling and co-clustering experiments, we further quantitatively revealed an intermediate, self-limiting clustering behavior of CD47, elucidating its fractional (∼14%) attachment to the cytoskeleton. Moreover, we report reductions in both the amount of CD47 and its clustering capability in aged erythrocytes, providing new insight into erythrocyte senescence. Together, the combination of STORM and 2nd antibody-based crosslinking unveils the unique self-limiting clustering behavior of CD47 due to its fractional cytoskeleton attachment.

5.
Food Chem ; 463(Pt 4): 141548, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39388874

ABSTRACT

The frequent occurrence of adulterating Tartary buckwheat powder with crop flours in the market necessitates an urgent need for a simple analysis method to ensure the quality of Tartary buckwheat. This study employed near-infrared spectroscopy (NIRS) for the collection of spectral data from Tartary buckwheat samples adulterated with whole wheat, oat, soybean, barley, and sorghum flours. The competitive adaptive reweighted sampling (CARS) and successive projection algorithm (SPA) were deployed to identify informative wavelengths. By integrating support vector machine (SVM) and partial least squares discriminant analysis (PLS-DA), we constructed qualitative models to discern Tartary buckwheat adulteration. The PLS-DA model exhibited prediction accuracies between 89.78 % and 94.22 %, while the mean-centering (MC)-PLS-DA model showcased impressive predictive accuracy of 93.33 %. Notably, the feature-based Autoscales-CARS-CV-SVM model achieved more excellent identification accuracy. These findings exhibit the excellent potential of chemometrics as a powerful tool for detecting food product adulteration.

6.
Foods ; 13(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39335793

ABSTRACT

Kelp is a traditional healthy food due to its high nutritional content; however, its relatively high contents of iodine and arsenic have raised concerns about its edible safety. This study explored the effects of different cooking treatments on the contents of iodine and arsenic in kelp, evaluated the bioaccessibility and bioavailability of iodine and arsenic in kelp using in vitro digestion, and compared the differences in the transport characteristics of iodine in kelp and KIO3 using a Caco-2 monolayer cell transport model. The results show that the content of target elements that reached systemic circulation could be reduced by cooking and gastrointestinal digestion. The highest reductions in iodine and arsenic were 94.4% and 74.7%, respectively, which were achieved by boiling for 10 min. The bioaccessibility and bioavailability of iodine and arsenic were significantly improved by a cooking treatment. However, the contents of iodine and arsenic decreased significantly, with the bioaccessibility of iodine reducing from 3188.2 µg/L to 317.0 µg/L and that of arsenic reducing from 32.5 µg/L to 18.1 µg/L in the gastric phase after boiling. The findings also show that the efficiency of iodine transport in kelp and KIO3 was positively correlated with the transport time and negatively correlated with the concentration of iodine. With the increase in the iodine concentration, the rate of iodine transport in kelp decreased from 63.93% to 3.14%, but that of KIO3 was stable at around 35%, which indicates that the absorption efficiency of iodine from kelp was limited, even when too much kelp was ingested. In conclusion, the edible safety of kelp is significantly improved after cooking. The risk of excessive iodine and arsenic intake caused by consuming kelp is extremely low, and as an effective iodine supplement source, kelp has higher edible safety compared with KIO3. This study clarifies the safety of algae based on iodine and arsenic contents and also provides a basis for the formulation of food safety standards.

7.
Sci Adv ; 10(38): eadq6505, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39292789

ABSTRACT

Hypericum perforatum, also known as "natural fluoxetine," is a commonly used herbal remedy for treating depression. It is unclear whether melatonin in plants regulated by the endogenous circadian clock system is like in vertebrates. In this work, we found that the melatonin signal and melatonin biosynthesis gene, serotonin N-acetyltransferase HpSNAT1, oscillates in a 24-hour cycle in H. perforatum. First, we constructed a yeast complementary DNA library of H. perforatum and found a clock protein HpLHY that can directly bind to the HpSNAT1 promoter. Second, it was confirmed that HpLHY inhibits the expression of HpSNAT1 by targeting the Evening Element. Last, it indicated that HpLHY-overexpressing plants had reduced levels of melatonin in 12-hour light/12-hour dark cycle photoperiod, while loss-of-function mutants exhibited high levels, but this rhythm seems to disappear as well. The results revealed the regulatory role of LHY in melatonin biosynthesis, which may make an important contribution to the field of melatonin synthesis regulation.


Subject(s)
Gene Expression Regulation, Plant , Hypericum , Melatonin , Plant Proteins , Melatonin/biosynthesis , Melatonin/metabolism , Hypericum/metabolism , Hypericum/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Promoter Regions, Genetic , Circadian Rhythm , Photoperiod
8.
Int J Nanomedicine ; 19: 9175-9193, 2024.
Article in English | MEDLINE | ID: mdl-39263632

ABSTRACT

Purpose: Ischemic stroke is a refractory disease wherein the reperfusion injury caused by sudden restoration of blood supply is the main cause of increased mortality and disability. However, current therapeutic strategies for the inflammatory response induced by cerebral ischemia-reperfusion (I/R) injury are unsatisfactory. This study aimed to develop a functional nanoparticle (MM/ANPs) comprising apelin-13 (APNs) encapsulated in macrophage membranes (MM) modified with distearoyl phosphatidylethanolamine-polyethylene glycol-RVG29 (DSPE-PEG-RVG29) to achieve targeted therapy against ischemic stroke. Methods: MM were extracted from RAW264.7. PLGA was dissolved in dichloromethane, while Apelin-13 was dissolved in water, and CY5.5 was dissolved in dichloromethane. The precipitate was washed twice with ultrapure water and then resuspended in 10 mL to obtain an aqueous solution of PLGA nanoparticles. Subsequently, the cell membrane was evenly dispersed homogeneously and mixed with PLGA-COOH at a mass ratio of 1:1 for the hybrid ultrasound. DSPE-PEG-RVG29 was added and incubated for 1 h to obtain MM/ANPs. Results: In this study, we developed a functional nanoparticle delivery system (MM/ANPs) that utilizes macrophage membranes coated with DSPE-PEG-RVG29 peptide to efficiently deliver Apelin-13 to inflammatory areas using ischemic stroke therapy. MM/ANPs effectively cross the blood-brain barrier and selectively accumulate in ischemic and inflamed areas. In a mouse I/R injury model, these nanoparticles significantly improved neurological scores and reduced infarct volume. Apelin-13 is gradually released from the MM/ANPs, inhibiting NLRP3 inflammasome assembly by enhancing sirtuin 3 (SIRT3) activity, which suppresses the inflammatory response and pyroptosis. The positive regulation of SIRT3 further inhibits the NLRP3-mediated inflammation, showing the clinical potential of these nanoparticles for ischemic stroke treatment. The biocompatibility and safety of MM/ANPs were confirmed through in vitro cytotoxicity tests, blood-brain barrier permeability tests, biosafety evaluations, and blood compatibility studies. Conclusion: MM/ANPs offer a highly promising approach to achieve ischemic stroke-targeted therapy inhibiting NLRP3 inflammasome-mediated pyroptosis.


Subject(s)
Inflammasomes , Ischemic Stroke , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Nanoparticles , Pyroptosis , Animals , Mice , Ischemic Stroke/drug therapy , RAW 264.7 Cells , Pyroptosis/drug effects , Nanoparticles/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/drug effects , Macrophages/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Male , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/chemistry , Polyethylene Glycols/chemistry , Mice, Inbred C57BL , Reperfusion Injury/drug therapy , Phosphatidylethanolamines/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism
9.
Discov Oncol ; 15(1): 423, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254737

ABSTRACT

BACKGROUND: Topoisomerase II α(TOP2A) is usually highly expressed in rapidly proliferating cells, and its expression is regulated by cell cycle. The relationship between TOP2A and oral squamous cell carcinoma (OSCC) needs further study. METHODS: TOP2A immunoreactivity was analyzed using immunohistochemical (IHC) staining analysis in specimens from 20 OSCC patients. Based on the high-throughput sequencing and gene microarray database, the expression of TOP2A mRNA in OSCC was calculated and its ability to identify OSCC tissues was evaluated by diagnostic analysis. CRISPR screen was used to select the genes necessary for OSCC cell growth, and the gene set was analyzed for function enrichment. Single-cell RNA sequencing analysis was conducted to evaluate the expression level of TOP2A mRNA in OSCC cells. RESULTS: Compared with normal oral tissues, the expression of TOP2A protein was up-regulated in OSCC tissues. A total of 1240 OSCC and 428 non-OSCC oral tissue samples were included based on high-throughput dataset retrieval, and it was confirmed that TOP2A mRNA was highly expressed in OSCC tissues [SMD = 1.51 (95% CI 0.94-2.07), sROC AUC = 0.96 (95% CI 0.94-0.98)]. As an essential gene for OSCC cell growth, single-cell RNA sequencing data also confirmed that TOP2A mRNA expression was up-regulated in OSCC cells. CONCLUSION: The up-regulation of TOP2A may play a pivotal role in OSCC.

10.
Food Chem ; 463(Pt 2): 141287, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39298850

ABSTRACT

Non-traditional seafood, such as spoon worms (Urechis unicinctus) and peanut worms (Sipunculus nudus), serves as both delicacies and potential solutions to the global food insecurity crisis. Despite being consumed primarily in parts of China, Korea, and Japan, the nutritional values especially the complex fatty acid compositions of these marine worms are difficult to characterize. To overcome this obstacle, we employed covalent adduct chemical ionization (CACI) tandem mass spectrometry for the de novo identification of their unusual polyunsaturated fatty acids (PUFA). Through this method, we identified several PUFA with polymethylene-interrupted (PMI) double bond configurations, including 22:3(7Z,13Z,16Z), a novel PUFA derived from sciadonic acid. U. unicinctus exhibits an exceptionally low n-6/n-3 PUFA ratio of 0.15, making it a potential functional food to counterbalance the n-6/n-3 imbalance in modern diets. S. nudus boasts notably high concentrations (∼3 %, wt/wt) of branched chain fatty acids (BCFA), exceeding typical levels found in dairy products.

11.
Front Immunol ; 15: 1459213, 2024.
Article in English | MEDLINE | ID: mdl-39247191

ABSTRACT

Background: Lactiplantibacillus plantarum (L. plantarum) is known for its probiotic properties, including antioxidant and anti-inflammatory effects. Recent studies have highlighted the role of extracellular vesicles (EVs) from prokaryotic cells in anti-inflammatory effects. Objective: This study aims to investigate the anti-inflammatory effects of extracellular vesicles derived from a newly isolated strain of L. plantarum (LP25 strain) and their role in macrophage polarization. Methods: The LP25 strain and its extracellular vesicles were isolated and identified through genomic sequencing, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). RAW 264.7 cells were treated with lipopolysaccharide (LPS) and/or LP25-derived extracellular vesicles (LEV). Morphological changes in the cells were observed, and the expression levels of pro-inflammatory cytokines (TNF-α, IL-6)、iNOS and anti-inflammatory cytokines (IL-10) 、Arg-1 were measured using quantitative real-time PCR (qPCR). Flow cytometry was used to detect the expression of Arg-1 in the treated cells. Results: Treatment with LP25 EVs led to significant morphological changes in RAW 264.7 cells exposed to LPS. LP25 EVs treatment resulted in increased expression of Arg-1 and anti-inflammatory cytokines IL-10, and decreased expression of iNOS and surface markers protein CD86. Flow cytometry confirmed the increased expression of the M2 macrophage marker Arg-1 in the LP25 EVs-treated group. Conclusion: Extracellular vesicles from Lactiplantibacillus plantarum LP25 can suppress inflammatory responses and promote the polarization of macrophages toward the anti-inflammatory M2 phenotype. These findings provide new evidence supporting the anti-inflammatory activity of L. plantarum-derived EVs.


Subject(s)
Extracellular Vesicles , Inflammation , Macrophages , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Mice , Animals , RAW 264.7 Cells , Macrophages/immunology , Macrophages/metabolism , Inflammation/immunology , Macrophage Activation/immunology , Cytokines/metabolism , Lactobacillus plantarum , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology
12.
Materials (Basel) ; 17(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39336363

ABSTRACT

This study builds a refined finite element (FE) model to research the flexural behavior of a reinforced beam with prestressed CFRP tendons. The precision of the FE model is validated through a comparison with the experimental outcomes. The numerical findings align well with the experimental outcomes, encompassing the failure mode, load-deflection curve, load-strain curves of concrete, steel reinforcements and CFRP tendons. The variances between predicted values and experimental results are within 10%. Leveraging the verified FE model, an extensive parametric study has been carried out to examine the effects of various parameters, including the CFRP tendon prestress, the CFRP tendon diameter, the deviator layout, the anchorage height and the prestressing strand prestress. Leveraging the findings from the parametric study, some refined design recommendations are proposed for practical reinforcement applications: Increasing the CFRP tendon prestress in practical reinforcement designs is recommended; CFRP tendons with larger diameters are recommended for use in practical reinforcement designs; Employing a linear CFRP tendon profile for reinforcement is not considered optimal in practical applications; The prestress loss in the prestressing strands of PC beams should be considered in practice.

13.
Int J Surg ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264581

ABSTRACT

BACKGROUND: Oncoplastic breast-conserving surgery (OBCS) improves satisfaction in patients who would fare otherwise sub-optimal cosmetic outcome, while brings challenge in tumor-bed identification during adjuvant radiotherapy. The ultra-hypofractionated breast radiotherapy further shortens treatment sessions from moderately hypofractionated regimens. To circumscribe the difficulty in tumor-bed contouring and the additional toxicity from larger boost volumes, we propose to move forward the boost session preoperatively from the adjuvant radiation part. Thus, the present study aims to evaluate the feasibility of a new treatment paradigm of preoperative primary-tumor boost before breast-conserving surgery (BCS) or OBCS followed by adjuvant ultra-hypofractionated whole-breast irradiation (u-WBRT) for patients with early-stage breast cancer. METHODS: There was a phase II study. Patients younger than 55 years old, with a biopsy confirmed mono-centric breast cancer, without lymph node involvement were enrolled. Preoperative primary-tumor boost was given by a single 10 Gy in 1 fraction, and BCS or OBCS was conducted within two weeks afterwards. Adjuvant u-WBRT (26 Gy/5.2 Gy/5 f) was given in 6 weeks postoperatively without any boost, after the full recovery from surgery. Surgical complications and patient-reported outcomes, as assessed via Breast-Q questionnaires, were documented. A propensity score matching approach was employed to identify a control group at a 1:1 ratio for BREAST-Q outcomes comparison. RESULTS: From May 2022 to September 2023, 36 patients were prospectively enrolled. Surgical complications were observed in 7 cases (19.4%), including 3 cases with Clavien-Dindo (CD) grade 1-2 and 4 cases with CD grade 3 complications. All but four patients (11.1%) started the planned u-WBRT within one week after the pre-defined due dates postoperatively (≤49 d). Four patients (11.1%) developed grade 2 radiodermatitis after chemotherapy initiation. Compared to the study group, the control patients reported higher scores in chest physical well-being (P=0.045) and in their attitudes towards arm swelling (P=0.01). No significant difference was detected in the other of domains (Satisfaction with Breasts, Sexual and Psychosocial Well-Being, and Adverse Effects of Radiation). With a median follow-up period of 9.8 months (2.4-18.9 mo), none had any sign of relapse. CONCLUSION: This Phase II clinical trial confirmed the technical and safety feasibility of novel radiation schedule in patients undergoing BCS or OBCS. According to the BREAST-Q questionnaire, patients who underwent novel radiation schedules reported lower satisfaction in chest physical well-being. A randomized controlled trial is necessary to further investigate these findings. Additionally, long-term follow-up is required to assess oncological outcomes.

14.
Mol Cell Probes ; 77: 101981, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39197503

ABSTRACT

The clinical treatment of hepatocellular carcinoma (HCC) is still a heavy burden worldwide. Intracellular microRNAs (miRNAs) commonly express abnormally in cancers, thus they are potential therapeutic targets for cancer treatment. miR-21 is upregulated in HCC whereas miR-122 is enriched in normal hepatocyte but downregulated in HCC. In our study, we first generated a reporter genetic switch compromising of miR-21 and miR-122 sponges as sensor, green fluorescent protein (GFP) as reporter gene and L7Ae:K-turn as regulatory element. The reporter expression was turned up in miR-21 enriched environment while turned down in miR-122 enriched environment, indicating that the reporter switch is able to respond distinctly to different miRNA environment. Furthermore, an AAT promoter, which is hepatocyte-specific, is applied to increase the specificity to hepatocyte. A killing switch with AAT promoter and an apoptosis-inducing element, Bax, in addition to miR-21 and miR-122 significantly inhibited cell viability in Huh-7 by 70 % and in HepG2 by 60 %. By contrast, cell viability was not affected in five non-HCC cells. Thus, we provide a novel feasible strategy to improve the safety of miRNA-based therapeutic agent to cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Promoter Regions, Genetic , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Promoter Regions, Genetic/genetics , Genes, Reporter , Hep G2 Cells , Cell Line, Tumor , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Organ Specificity/genetics
15.
Nat Neurosci ; 27(10): 2009-2020, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39179884

ABSTRACT

The human brain experiences functional changes through childhood and adolescence, shifting from an organizational framework anchored within sensorimotor and visual regions into one that is balanced through interactions with later-maturing aspects of association cortex. Here, we link this profile of functional reorganization to the development of ventral attention network connectivity across independent datasets. We demonstrate that maturational changes in cortical organization link preferentially to within-network connectivity and heightened degree centrality in the ventral attention network, whereas connectivity within network-linked vertices predicts cognitive ability. This connectivity is associated closely with maturational refinement of cortical organization. Children with low ventral attention network connectivity exhibit adolescent-like topographical profiles, suggesting that attentional systems may be relevant in understanding how brain functions are refined across development. These data suggest a role for attention networks in supporting age-dependent shifts in cortical organization and cognition across childhood and adolescence.


Subject(s)
Attention , Cerebral Cortex , Cognition , Magnetic Resonance Imaging , Nerve Net , Humans , Child , Attention/physiology , Male , Female , Cognition/physiology , Adolescent , Cerebral Cortex/physiology , Cerebral Cortex/growth & development , Nerve Net/physiology , Nerve Net/growth & development , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Neural Pathways/growth & development , Brain Mapping , Child Development/physiology , Connectome
16.
Aging (Albany NY) ; 16(17): 12263-12276, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197167

ABSTRACT

The primary objective of this study was to explore the extensive implications and complex molecular interactions arising from the confluence of excessive glucocorticoids and RANKL on the differentiation process of BMM into osteoclasts, profoundly impacting osteoporosis development. The methodology encompassed X-ray analysis and HE staining for evaluating bone loss in mice, while immunohistochemical staining was utilized to observe phosphorylated SHP2 (p-SHP2) expression. The assessment of several phosphorylated and total protein expression levels, including NF-κB, SHP2, SYK, JAK2, TAK1, NFATC1, c-fos, and Cathepsin K, was conducted via Western blotting. Additional experiments, involving CCK8 and monoclonal proliferation assays, were undertaken to determine BMM proliferation capacity. Immunofluorescence staining facilitated the quantification of TRAP fluorescence intensity. In vivo analysis revealed that glucocorticoid surplus triggers SHP2 signaling pathway activation, accelerating osteoporosis progression. Western blot results demonstrated that SHP2 inhibition could decrease the expression of specific proteins such as p-NF-κB and p-SHP2, with minimal effects on p-SYK levels. In vitro findings indicated that glucocorticoid and RANKL interaction activates the SHP2 pathway through NF-κB and SYK pathways, enhancing expressions of p-JAK2, p-TAK1, NFATC1, c-fos, and Cathepsin K, thereby promoting BMM to osteoclast transformation. Conclusion: Excessive glucocorticoids and RANKL interaction advance osteoclast differentiation from BMM by activating the SYK/SHP2/NF-κB signaling pathway, expediting osteoporosis progression.


Subject(s)
Cell Differentiation , Glucocorticoids , Macrophages , NF-kappa B , Osteoclasts , Osteoporosis , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , RANK Ligand , Signal Transduction , Syk Kinase , Animals , RANK Ligand/metabolism , Osteoclasts/metabolism , Osteoclasts/drug effects , Cell Differentiation/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Syk Kinase/metabolism , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Glucocorticoids/pharmacology , Osteoporosis/metabolism , Osteoporosis/pathology , Macrophages/metabolism , Macrophages/drug effects , Female , Mice, Inbred C57BL
17.
Food Chem X ; 23: 101672, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39139490

ABSTRACT

2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) is a prevalent heterocyclic amine (HAA) found in heated processed meat. This study investigated the inhibitory impact of eight different types of polyphenols containing m-dihydroxyl structure on PhIP formation through a chemical model system. The structure-activity relationship and potential sites of action of polyphenols containing m-dihydroxyl structure were also analyzed. Then, the mechanism of inhibiting PhIP formation by kaempferol, naringenin and quercetin was speculated by UPLC-MS. Results showed that 8 kinds of polyphenols containing m-dihydroxyl structure had significant (P < 0.05) inhibition on the formation of PhIP in the chemical model system in a dose-dependent manner. In addition, PhIP was most significantly inhibited by naringenin at the same concentration, followed by kaempferol and quercetin (83.27%, 80.81% and 79.26%, respectively). UPLC-MS results speculated that kaempferol, naringenin, and quercetin formed a new admixture via an electrophilic aromatic substitution reaction with the intermediate product phenylacetaldehyde, preventing the formation of PhIP.

18.
Food Chem ; 460(Pt 2): 140695, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39098194

ABSTRACT

Molecularly imprinted polymers (MIPs) have been widely studied in environmental protection and food industry, owing to their excellent specific recognition and structural stability. However, MIPs prepared by conventional methods suffer from low adsorption capacity and slow mass transfer rate. To date, the combination of electrostatic spinning technology and molecular imprinting technology has been proposed to prepare molecularly imprinted membranes (MIMs) with specific recognition capability, and has shown great attraction in the separation and detection of food additives, as well as the extraction and release of active ingredients. In recent years, MIPs and electrostatic spinning technologies have been investigated and evaluated. However, there is no review of electrostatically spun MIMs for food field. In this review, we focus on the fabrication methods and applications of electrostatically spun MIMs in the food, discuss the challenges in practical food applications, and emphasize the promising applications of electrostatically spun MIMs in food field.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Molecularly Imprinted Polymers/chemistry , Food Industry , Static Electricity , Food Additives/analysis , Food Additives/chemistry , Polymers/chemistry , Membranes, Artificial
19.
Biomed Chromatogr ; : e5969, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126348

ABSTRACT

This study aimed to explore the pharmacodynamics and mechanisms of different processing methods of Ligustrum lucidum Ait. (LLA) in addressing kidney-yin deficiency (KYD). Forty-eight Sprague-Dawley rats were divided into eight groups based on their weight. The KYD model was established by intragastric administration of levothyroxine sodium. Each group was administered the corresponding treatment for 15 consecutive days. The general condition of the rats during the treatment period was observed. In addition, the levels of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), and the ratio of cAMP to cGMP in the serum of rats from different groups were measured. Serum samples were analyzed using the ultra-performance liquid chromatography (UPLC)-Orbitrap Fusion MS technique for metabolomics analysis. Compared with the model group, the general condition of the rats in the wine-steamed L. lucidum group (WL) and salt-steamed L. lucidum group (SSL) groups showed significant improvement. The serum levels of cAMP, cGMP, and the cAMP-to-cGMP ratio tended to return to normal. Metabolic analysis identified 38 relevant biomarkers and revealed 3 major metabolic pathways: phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; and sphingolipid metabolism. The different processing methods of LLA demonstrated therapeutic effects on KYD in rats, likely related to the restoration of disturbed metabolism by adjusting the levels of endogenous metabolites in the kidney. The SSL demonstrated significantly superior effects compared with the other four types of LLA processed products.

20.
Gut Pathog ; 16(1): 42, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118149

ABSTRACT

BACKGROUND: Recently, the oral oncobacterium Fusobacterium nucleatum (F. nucleatum), has been linked with ulcerative colitis (UC). Here, we aim to investigate whether Fecal Microbiota Transplantation (FMT) can alleviate UC by restoring gut microbiota and eliminating oral-derived F. nucleatum and virulence factor fadA. METHOD: C57BL/6J mice were randomly divided into a healthy control group (HC), Dextran Sulfate Sodium group (DSS), oral inoculation group (OR), upper FMT group (UFMT), and lower FMT group (LFMT). Disease activity index, body weight, survival rate, and histopathological scores were used to measure the severity of colitis. The function of the intestinal mucosal barrier was evaluated by performing immunohistochemical staining of the tight junction protein Occludin. Real-time PCR was used to assess the relative abundance of the nusG gene and the virulence gene fadA. Cytokine levels were detected by ELISA. Full-length sequencing of 16S rRNA was used to analyze the changes and composition of gut microbiota. FINDINGS: Oral incubation of F. nucleatum further exacerbated the severity of colitis and gut dysbiosis. Peptostreptococcaceae, Enterococcaceae, and Escherichia coli were significantly enriched in OR mice. However, LFMT mice showed an obvious decrease in disease activity and were more effective in restoring gut microbiota and eliminating F. nucleatum than UFMT mice. Bacteroidota, Lachnospiraceae, and Prevotellaceae were mainly enriched bacteria in LFMT mice. In addition, Genera such as Lactobacillus, Allobaculum, and Bacteroidales were found negative correlation with TNF-α, IL-1ß, and IL-6. Genera like Romboutsia, Escherichia Shigella, Enterococcus, and Clostridium were found positively correlated with TNF-α, IL-1ß, and IL-6. CONCLUSIONS: Oral incubation of F. nucleatum further exacerbates the severity and dysbiosis in DSS-induced colitis mice. Besides, lower tract FMT can ameliorate colitis by restoring the gut microbiota diversity and eliminating F. nucleatum and virulence factor fadA.

SELECTION OF CITATIONS
SEARCH DETAIL