Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1417314, 2024.
Article in English | MEDLINE | ID: mdl-39086910

ABSTRACT

Background: The plant root system is critical for the absorption of water and nutrients, and have a direct influence on growth and yield. In cucumber, a globally consumed crop, the molecular mechanism of root development remains unclear, and this has implications for developing stress tolerant varieties. This study sought to determine the genetic patterns and related genes of cucumber root weight. A core cucumber germplasms population was used to do the GWAS analysis in three environments. Results: Here, we investigated four root-weight related traits including root fresh weight (RFW), root dry weight (RDW), ratio of root dry weight to root fresh weight (RDFW) and the comprehensive evaluation index, D-value of root weight (DRW) deduced based on the above three traits for the core germplasm of the cucumber global repository. According to the D-value, we identified 21 and 16 accessions with light and heavy-root, respectively. We also found that the East Asian ecotype accessions had significantly heavier root than other three ecotypes. The genome-wide association study (GWAS) for these four traits reveals that 4 of 10 significant loci (gDRW3.1, gDRW3.2, gDRW4.1 and gDRW5.1) were repeatedly detected for at least two traits. Further haplotype and expression analysis for protein-coding genes positioned within these 4 loci between light and heavy-root accessions predicted five candidate genes (i.e., Csa3G132020 and Csa3G132520 both encoding F-box protein PP2-B1 for gDRW3.1, Csa3G629240 encoding a B-cell receptor-associated protein for gDRW3.2, Csa4G499330 encodes a GTP binding protein for gDRW4.1, and Csa5G286040 encodes a proteinase inhibitor for gDRW5.1). Conclusions: We conducted a systematic analysis of the root genetic basis and characteristics of cucumber core germplasms population. We detected four novel loci, which regulate the root weight in cucumber. Our study provides valuable candidate genes and haplotypes for the improvement of root system in cucumber breeding.

2.
BMC Plant Biol ; 24(1): 737, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095762

ABSTRACT

BACKGROUND: BAK1 (Brassinosteroid insensitive 1-associated receptor kinase 1) plays an important role in disease resistance in plants. However, the function of BAK1 family in cucumber and the decisive genes for disease-resistance remain elusive. RESULTS: Here, we identified 27 CsBAK1s in cucumber, and classified them into five subgroups based on phylogenetic analysis and gene structure. CsBAK1s in the same subgroup shared the similar motifs, but different gene structures. Cis-elements analysis revealed that CsBAK1s might respond to various stress and growth regulation. Three segmentally duplicated pairwise genes were identified in cucumber. In addition, Ka/Ks analysis indicated that CsBAK1s were under positive selection during evolution. Tissue expression profile showed that most CsBAK1s in Subgroup II and IV showed constitutive expression, members in other subgroups showed tissue-specific expression. To further explore whether CsBAK1s were involved in the resistance to pathogens, the expression patterns of CsBAK1s to five pathogens (gummy stem blight, powdery mildew, downy mildew, grey mildew, and fusarium wilt) reveled that different CsBAK1s had specific roles in different pathogen infections. The expression of CsBAK1-14 was induced/repressed significantly by five pathogens, CsBAK1-14 might play an important role in disease resistance in cucumber. CONCLUSIONS: 27 BAK1 genes were identified in cucumber from a full perspective, which have important functions in pathogen infection. Our study provided a theoretical basis to further clarify the function of BAK1s to disease resistance in cucumber.


Subject(s)
Cucumis sativus , Disease Resistance , Phylogeny , Plant Diseases , Plant Proteins , Cucumis sativus/genetics , Cucumis sativus/microbiology , Cucumis sativus/enzymology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Genes, Plant , Genome, Plant , Gene Expression Profiling
4.
Hortic Res ; 11(2): uhad295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404593

ABSTRACT

Powdery mildew (PM) is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars will require a robust understanding of the molecular mechanisms of cucumber resistance against PM. Using a genome-wide association study, we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus resulted in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl, and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.

5.
J Integr Plant Biol ; 65(12): 2552-2568, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37811725

ABSTRACT

Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA , but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.


Subject(s)
Cucumis sativus , Cucumis sativus/genetics , Temperature , Genome-Wide Association Study , Plant Breeding , Cold Temperature
6.
Front Plant Sci ; 14: 1116214, 2023.
Article in English | MEDLINE | ID: mdl-37235012

ABSTRACT

Low temperatures (LTs) negatively affect the percentage and rate of cucumber (Cucumis sativus L.) seed germination, which has deleterious effects on yield. Here, a genome-wide association study (GWAS) was used to identify the genetic loci underlying low temperature germination (LTG) in 151 cucumber accessions that represented seven diverse ecotypes. Over two years, phenotypic data for LTG i.e., relative germination rate (RGR), relative germination energy (RGE), relative germination index (RGI) and relative radical length (RRL), were collected in two environments, and 17 of the 151 accessions were found to be highly cold tolerant using cluster analysis. A total of 1,522,847 significantly associated single-nucleotide polymorphism (SNP) were identified, and seven loci associated with LTG, on four chromosomes, were detected: gLTG1.1, gLTG1.2, gLTG1.3, gLTG4.1, gLTG5.1, gLTG5.2, and gLTG6.1 after resequencing of the accessions. Of the seven loci, three, i.e., gLTG1.2, gLTG4.1, and gLTG5.2, showed strong signals that were consistent over two years using the four germination indices, and are thus strong and stable for LTG. Eight candidate genes associated with abiotic stress were identified, and three of them were potentially causal to LTG: CsaV3_1G044080 (a pentatricopeptide repeat-containing protein) for gLTG1.2, CsaV3_4G013480 (a RING-type E3 ubiquitin transferase) for gLTG4.1, and CsaV3_5G029350 (a serine/threonine-protein kinase) for gLTG5.2. The function for CsPPR (CsaV3_1G044080) in regulating LTG was confirmed, as Arabidopsis lines ectopically expressing CsPPR showed higher germination and survival rates at 4°C compared to the wild-type, which preliminarily illustrates that CsPPR positively regulates cucumber cold tolerance at the germination stage. This study will provide insights into cucumber LT-tolerance mechanisms and further promote cucumber breeding development.

7.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232530

ABSTRACT

A large collection of transgenic tomato lines, each ectopically expressing a different Arabidopsis thaliana transcription factor, was screened for variants with alterations in leaf starch. Such lines may be affected in carbon partitioning, and in allocation to the sinks. We focused on 'L4080', which harbored an A. thaliana zDof (DNA-binding one zinc finger) isoform 1.3 (AtzDof1.3) gene, and which had a 2−4-fold higher starch-to-sucrose ratio in source leaves over the diel (p < 0.05). Our aim was to determine whether there were associated effects on productivity. L4080 plants were altered in nitrogen (N) and carbon (C) metabolism. The N-to-C ratio was higher in six-week-old L4080, and when treated with 1/10 N, L4080 growth was less inhibited compared to the wild-type and this was accompanied by faster root elongation (p < 0.05). The six-week-old L4080 acquired 42% more dry matter at 720 ppm CO2, compared to ambient CO2 (p < 0.05), while the wild-type (WT) remained unchanged. GC-MS-TOF data showed that L4080 source leaves were enriched in amino acids compared to the WT, and at 49 DPA, fruit had 25% greater mass, higher sucrose, and increased yield (25%; p < 0.05) compared to the WT. An Affymetrix cDNA array analysis suggested that only 0.39% of the 9000 cDNAs were altered by 1.5-fold (p < 0.01) in L4080 source leaves. 14C-labeling of fruit disks identified potential differences in 14-DPA fruit metabolism suggesting that post-transcriptional regulation was important. We conclude that AtzDof1.3 and the germplasm derived therefrom, should be investigated for their 'climate-change adaptive' potential.


Subject(s)
Arabidopsis , Solanum lycopersicum , Amino Acids/metabolism , Arabidopsis/metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , DNA/metabolism , Ectopic Gene Expression , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Nitrogen/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Starch/metabolism , Sucrose/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Front Plant Sci ; 13: 968811, 2022.
Article in English | MEDLINE | ID: mdl-36119620

ABSTRACT

Gummy stem blight (GSB), caused by Didymella bryoniae, is one of the most devastating diseases that severely reduces cucumber production. Developing resistant varieties would be an effective strategy to control GSB. Although several GSB-resistant QTLs have been reported, causal genes for GSB resistance have not yet been identified in cucumber. A novel loci gsb3.1 for seedling GSB resistance from the "PI 183967" genotype was previously identified in a 1.7-Mb interval on chromosome 3. In this study, we developed a residual heterozygous line-derived strategy from Recombinant Inbred Lines to perform fine mapping, and with this approach, the gsb3.1 locus was narrowed to a 38 kb interval. There were six predicted genes at the gsb3.1 locus, four of which differed in expression in the GSB-resistant compared to the susceptible lines after fungal inoculation. These candidate genes (Csa3G020050, Csa3G020060, Csa3G020090, and Csa3G020590) within the gsb3.1 locus could be helpful for the genetic study of GSB resistance and marker-assisted selection in cucumber. Phylogenetic analyses indicated that the resistant gsb3.1 allele may uniquely exist in the wild species present in the Indian group, and that nucleotide diversity was significantly reduced in cultivated accessions. Therefore, the gsb3.1 allele could be introgressed into existing commercial cultivars and combined with other resistance QTLs to provide broad-spectrum and robust GSB resistance in cucumber.

9.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35897836

ABSTRACT

Salt stress seriously restricts plant growth and development, affects yield and quality, and thus becomes an urgent problem to be solved in cucumber stress resistance breeding. Mining salt tolerance genes and exploring the molecular mechanism of salt tolerance could accelerate the breeding of cucumber germplasm with excellent salt stress tolerance. In this study, 220 cucumber core accessions were used for Genome-Wide Association Studies (GWAS) and the identification of salt tolerance genes. The salinity injury index that was collected in two years showed significant differences among the core germplasm. A total of seven loci that were associated with salt tolerance in cucumber seedlings were repeatedly detected, which were located on Chr.2 (gST2.1), Chr.3 (gST3.1 and gST3.2), Chr.4 (gST4.1 and gST4.2), Chr.5 (gST5.1), and Chr.6 (gST6.1). Within these loci, 62 genes were analyzed, and 5 candidate genes (CsaV3_2G035120, CsaV3_3G023710, CsaV3_4G033150, CsaV3_5G023530, and CsaV3_6G009810) were predicted via the functional annotation of Arabidopsis homologous genes, haplotype of extreme salt-tolerant accessions, and qRT-PCR. These results provide a guide for further research on salt tolerance genes and molecular mechanisms of cucumber seedlings.


Subject(s)
Cucumis sativus , Salt Tolerance , Cucumis sativus/genetics , Genome-Wide Association Study , Genomics , Plant Breeding , Salt Tolerance/genetics , Seedlings/genetics
10.
Theor Appl Genet ; 135(9): 3117-3125, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35869997

ABSTRACT

KEY MESSAGE: Two candidate genes (Csa6G046210 and Csa6G046240) were identified by fine-mapping gsb-s6.2 for gummy stem blight resistance in cucumber stem. Gummy stem blight (GSB) is a serious fungal disease caused by Didymella bryoniae, that affects cucumber yield and quality worldwide. However, no GSB-resistant genes have been identified in cucumber cultivars. In this study, the wild cucumber accession 'PI 183967' was used as a source of resistance to GSB in adult stems. An F2 population was mapped using resistant line 'LM189' and susceptible line 'LM6' derived from a cross between 'PI 183967' and '931'. By developing InDel and SNP markers, the gsb-s6.2 QTL on Chr. 6 was fine-mapped to a 34 kb interval harboring six genes. Gene Expression analysis after inoculation showed that two candidate genes (Csa6G046210 and Csa6G046240) were induced and differentially expressed between the resistant and susceptible parents, and may be involved in disease defense. Sequence alignment showed that Csa6G046210 encodes a multiple myeloma tumor-associated protein, and it harbored two nonsynonymous SNPs and one InDel in the third and the fourth exons, and two InDels in the TATA-box of the basal promoter region. Csa6G046240 encodes a MYB transcription factor with six variants in the AP2/ERF and MYB motifs in the promoter. These two candidate genes lay the foundation for revealing the mechanism of GSB resistance and may be useful for marker-assisted selection in cucumber disease-resistant breeding.


Subject(s)
Cucumis sativus , Cucumis sativus/microbiology , Disease Resistance/genetics , Genetic Association Studies , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Transcription Factors/genetics
11.
Genes (Basel) ; 13(6)2022 06 19.
Article in English | MEDLINE | ID: mdl-35741858

ABSTRACT

The stem diameter, an important agronomic trait, affects cucumber growth and yield. However, no genes responsible for cucumber stem diameter have been identified yet. In this study, the stem diameter of 88 cucumber core germplasms were measured in spring 2020, autumn 2020 and autumn 2021, and a genome-wide association study (GWAS) was carried out based on the gene sequence and stem diameter of core germplasms. A total of eight loci (gSD1.1, gSD2.1, gSD3.1, gSD3.2, gSD4.1, gSD5.1, gSD5.2, and gSD6.1) significantly associated with cucumber stem diameter were detected. Of these, five loci (gSD1.1, gSD2.1, gSD3.1, gSD5.2, and gSD6.1) were repeatedly detected in two or more seasons and were considered as robust and reliable loci. Based on the linkage disequilibrium sequences of the associated SNP loci, 37 genes were selected. By further investigating the five loci via analyzing Arabidopsis homologous genes and gene haplotypes, five genes (CsaV3_1G028310, CsaV3_2G006960, CsaV3_3G009560, CsaV3_5G031320, and CsaV3_6G031260) showed variations in amino acid sequence between thick stem lines and thin stem lines. Expression pattern analyses of these genes also showed a significant difference between thick stem and thin stem lines. This study laid the foundation for gene cloning and molecular mechanism study of cucumber stem development.


Subject(s)
Cucumis sativus , Glycogen Storage Disease Type II , Cucumis sativus/genetics , Genome-Wide Association Study , Linkage Disequilibrium , Phenotype
12.
Theor Appl Genet ; 135(8): 2593-2607, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35764690

ABSTRACT

KEY MESSAGE: The CsGAI gene, identified by map-based, was involved in regulating seed germination in low temperature via the GA and ABA signaling pathways. Low temperature reduces the percentage of seeds germinating and delays seed germinating time, thus posing a threat to cucumber production. However, the molecular mechanism regulating low temperature germination in cucumber is unknown. We here dissected a major quantitative trait locus qLTG1.1 that controls seed germination at low temperature in cucumber. First, we fine-mapped qLTG1.1 to a 46.3-kb interval, containing three candidate genes. Sequence alignment and gene expression analysis identified Csa1G408720 as the gene of interest that was highly expressed in seeds, and encoded a highly conserved, low temperature-regulated DELLA family protein CsGAI. GUS expression analysis indicated that higher promoter activity underscored higher transcriptional expression of the CsGAI gene. Consistent with the known roles of GAI in ABA and GA signaling during germination, genes involved in the GA (CsGA2ox, CsGA3ox) and ABA biosynthetic pathways (CsABA1, CsABA2, CsAAO3 and CsNCED) were found to be differently regulated in the tolerant and sensitive genotypes under low temperatures, and this was reflected in differences in their ratio of GA-to-ABA. Based on these data, we proposed a working model explaining how CsGAI integrates the GA and ABA signaling pathways, to regulate cucumber seed germination at low temperature, thus providing new insights into this mechanism.


Subject(s)
Cucumis sativus , Germination , Abscisic Acid/metabolism , Cucumis sativus/genetics , Cucumis sativus/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Gibberellins/metabolism , Seeds/metabolism , Temperature
13.
Plant J ; 110(2): 325-336, 2022 04.
Article in English | MEDLINE | ID: mdl-35181968

ABSTRACT

Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.


Subject(s)
Cucumis sativus , Cucumis sativus/metabolism , Fruit/metabolism , Genome-Wide Association Study , Indoleacetic Acids/metabolism , Phenotype , Plant Proteins/metabolism
14.
Theor Appl Genet ; 134(11): 3535-3552, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34181057

ABSTRACT

KEY MESSAGE: Recent molecular studies revealed new opportunities to improve cucumber fruit quality. However, the fruit color and spine traits molecular basis remain vague despite the vast sources of genetic diversity. Cucumber is agriculturally, economically and nutritionally important vegetable crop. China produces three-fourths of the world's total cucumber production. Cucumber fruit quality depends on a number of traits such as the fruit color (peel and flesh color), spine (density, size and color), fruit shape, fruit size, defects, texture, firmness, taste, maturity stage and nutritional composition. Fruit color and spine traits determine critical quality attributes and have been the interest of researchers at the molecular level. Evaluating the molecular mechanisms of fruit quality traits is important to improve production and quality of cucumber varieties. Genes and qualitative trait locus (QTL) that are responsible for cucumber fruit color and fruit spine have been identified. The purpose of this paper is to reveal the molecular research progress of fruit color and spines as key quality traits of cucumber. The markers and genes identified so far could help for marker-assisted selection of the fruit color and spine trait in cucumber breeding and its associated nutritional improvement. Based on the previous studies, peel color and spine density as examples, we proposed a comprehensive approach for cucumber fruit quality traits improvement. Moreover, the markers and genes can be useful to facilitate cloning-mediated genetic breeding in cucumber. However, in the era of climate change, increased human population and high-quality demand of consumers, studies on molecular mechanisms of cucumber fruit quality traits are limited.


Subject(s)
Cucumis sativus/genetics , Fruit , Plant Breeding , Quantitative Trait Loci , Color , Trichomes
15.
Hortic Res ; 8(1): 120, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34059656

ABSTRACT

Heterosis has historically been exploited in plants; however, its underlying genetic mechanisms and molecular basis remain elusive. In recent years, due to advances in molecular biotechnology at the genome, transcriptome, proteome, and epigenome levels, the study of heterosis in vegetables has made significant progress. Here, we present an extensive literature review on the genetic and epigenetic regulation of heterosis in vegetables. We summarize six hypotheses to explain the mechanism by which genes regulate heterosis, improve upon a possible model of heterosis that is triggered by epigenetics, and analyze previous studies on quantitative trait locus effects and gene actions related to heterosis based on analyses of differential gene expression in vegetables. We also discuss the contributions of yield-related traits, including flower, fruit, and plant architecture traits, during heterosis development in vegetables (e.g., cabbage, cucumber, and tomato). More importantly, we propose a comprehensive breeding strategy based on heterosis studies in vegetables and crop plants. The description of the strategy details how to obtain F1 hybrids that exhibit heterosis based on heterosis prediction, how to obtain elite lines based on molecular biotechnology, and how to maintain heterosis by diploid seed breeding and the selection of hybrid simulation lines that are suitable for heterosis research and utilization in vegetables. Finally, we briefly provide suggestions and perspectives on the role of heterosis in the future of vegetable breeding.

16.
Plants (Basel) ; 10(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567629

ABSTRACT

Heat stress during cucumber production often leads to sunburn of leaves, growth retardation of stems and roots, fruit malformation, and even plant death, which have a great impact on the fruit quality and yield. However, no studies on the genetic inheritance and quantitative trait locus mapping of heat tolerance in cucumber at the adult stage have been reported yet. In this study, a set of 86 recombinant inbred lines (RILs) derived from "99281" (heat-tolerant) and "931" (heat-sensitive) were used to identify the heat tolerance QTL in summer 2018, 2019, and 2020. Eight-week-old plants were exposed to a natural high temperature environment in the field, and the heat injury index was used to indicate the heat tolerance performance. Genetic analysis showed that the heat tolerance of adult cucumber is quantitatively inherited. One QTL named qHT1.1 on chromosome 1 was identified. It was delimited by Indel 3-3 and Indel 1-15 and explained 59.6%, 58.1%, and 40.1% of the phenotypic variation in 2018, 2019, and 2020, respectively. The efficiency of marker HT-1, which is closely linked to the locus, was tested using 62 cucumber germplasm accessions and was found to have an accuracy of 97.8% in heat sensitive plants. The qHT1.1 was delimited to a 694.5-kb region, containing 98 genes, nine of which may be involved in heat tolerance. Further sequence analysis showed that there are three single-base substitutions within the coding sequences of Csa1G004990. Gene expression analyses suggested that the expression of Csa1G004990 was significantly higher in "99281" than "931" at 14d, 35d, 42d, and 49d after transplanting. This study provides practically useful markers for heat tolerance breeding in cucumber and provides a basis for further identifying heat tolerant genes.

17.
Plants (Basel) ; 10(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401544

ABSTRACT

Cucumber is very sensitive to salt stress, and excessive salt content in soils seriously affects normal growth and development, posing a serious threat to commercial production. In this study, the recombinant inbred line (RIL) population (from a cross between the salt tolerant line CG104 and salt sensitive line CG37) was used to study the genetic mechanism of salt tolerance in cucumber seedlings. At the same time, the candidate genes within the mapping region were cloned and analyzed. The results showed that salt tolerance in cucumber seedlings is a quantitative trait controlled by multiple genes. In experiments carried out in April and July 2019, qST6.2 on chromosome six was repeatedly detected. It was delimited into a 1397.1 kb region, and nine genes related to salt tolerance were identified. Among these genes, Csa6G487740 and Csa6G489940 showed variations in amino acid sequence between lines CG104 and CG37. Subsequent qRT-PCR showed that the relative expression levels of both genes during salt treatment were significantly different between the two parents. These results provide a basis for the fine mapping of salt tolerant genes and further study of the molecular mechanism of salt tolerance in cucumber seedlings.

18.
Plants (Basel) ; 9(9)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906664

ABSTRACT

High temperature is one of the major abiotic stresses that affect cucumber growth and development. Heat stress often leads to metabolic malfunction, dehydration, wilting and death, which has a great impact on the yield and fruit quality. In this study, genetic analysis and quantitative trait loci (QTL) mapping for thermotolerance in cucumber seedlings was investigated using a recombinant inbred line (RILs; HR) population and a doubled haploid (DH; HP) population derived from two parental lines '65G' (heat-sensitive) and '02245' (heat-tolerant). Inheritance analysis suggested that both short-term extreme and long-term mild thermotolerance in cucumber seedlings were determined by multiple genes. Six QTLs for heat tolerance including qHT3.1, qHT3.2, qHT3.3, qHT4.1, qHT4.2, and qHT6.1 were detected. Among them, the major QTL, qHT3.2, was repeatedly detected for three times in HR and HP at different environments, explained 28.3% of the phenotypic variability. The 481.2 kb region harbored 79 genes, nine of which might involve in heat stress response. This study provides a basis for further identifying thermotolerant genes and helps understanding the molecular mechanism underlying thermotolerance in cucumber seedlings.

19.
Plants (Basel) ; 9(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906450

ABSTRACT

Starch provides plants with carbon and energy during stressful periods; however, relatively few regulators of starch metabolism under stress-induced carbon starvation have been discovered. We studied a protein kinase Ser/Thr/Tyr (STY) 46, identified by gene co-expression network analysis as a potential regulator of the starch starvation response in Arabidopsis thaliana. We showed that STY46 was induced by (1) abscisic acid and prolonged darkness, (2) by abiotic stressors, including salinity and osmotic stress, and (3) by conditions associated with carbon starvation. Characterization of STY46 T-DNA knockout mutants indicated that there was functional redundancy among the STY gene family, as these genotypes did not show strong phenotypes. However, Arabidopsis with high levels of STY46 transcripts (OE-25) grew faster at the early seedling stage, had higher photosynthetic rates, and more carbon was stored as protein in the seeds under control conditions. Further, OE-25 source leaf accumulated more sugars under 100 mM NaCl stress, and salinity also accelerated root growth, which is consistent with an adaptive response. Salt-stressed OE-25 partitioned 14C towards sugars and amino acids, and away from starch and protein in source leaves. Together, these findings suggested that STY46 may be part of the salinity stress response pathway that utilizes starch during early plant growth.

20.
BMC Plant Biol ; 19(1): 243, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31174472

ABSTRACT

BACKGROUND: Green flesh color, resulting from the accumulation of chlorophyll, is one of the most important commercial traits for the fruits. The genetic network regulating green flesh formation has been studied in tomato, melon and watermelon. However, little is known about the inheritance and molecular basis of green flesh in cucumber. This study sought to determine the main genomic regions associated with green flesh. Three F2 and two BC1 populations derived from the 9110Gt (cultivated cucumber, green flesh color) and PI183967 (wild cucumber, white flesh color) were used for the green flesh genetic analysis. Two F2 populations of them were further employed to do the map construction and quantitative trait loci (QTL) study. Also, a core cucumber germplasms population was used to do the GWAS analysis. RESULTS: We identified three indexes, flesh color (FC), flesh extract color (FEC) and flesh chlorophyll content (FCC) in three environments. Genetic analysis indicated that green flesh color in 9110Gt is controlled by a major-effect QTL. We developed two genetic maps with 192 and 174 microsatellite markers respectively. Two novel inversions in Chr1 were identified between cultivated and wild cucumbers. The major-effect QTL, qgf5.1, was identified using FC, FEC and FCC index in all different environments used. In addition, the same qgf5.1, together with qgf3.1, was identified via GWAS. Further investigation of two candidate regions using pairwise LD correlations, combined with genetic diversity of qgf5.1 in natural populations, it was found that Csa5G021320 is the candidate gene of qgf5.1. Geographical distribution revealed that green flesh color formation could be due to the high latitude, which has longer day time to produce the photosynthesis and chlorophyll synthesis during cucumber domestication and evolution. CONCLUSIONS: We first reported the cucumber green flesh color is a quantitative trait. We detected two novel loci qgf5.1 and qgf3.1, which regulate the green flesh formation in cucumber. The QTL mapping and GWAS approaches identified several candidate genes for further validation using functional genomics or forward genetics approaches. Findings from the present study provide a new insight into the genetic control of green flesh in cucumber.


Subject(s)
Cucumis sativus/physiology , Genome-Wide Association Study , Phenotype , Pigmentation/genetics , Quantitative Trait Loci/genetics , Chromosome Mapping , Color , Cucumis sativus/genetics , Gene Regulatory Networks/physiology
SELECTION OF CITATIONS
SEARCH DETAIL