Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.393
Filter
1.
J Ethnopharmacol ; 336: 118751, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39214192

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Huachansu Capsule (HCSc) is a simple enteric-coated capsule refined from the skin of the dried toad, a traditional medicinal herb. It has been used clinically for many years to treat a variety of malignant tumors with remarkable efficacy. To date, a number of main components of HCSc have been reported to be cardiotoxic, but the specific mechanism of cardiotoxicity is still unknown. AIM OF THE STUDY: The aim of this study was to elucidate the possible cardiotoxic symptoms caused by high-doses of HCSc and to further reveal the complex mechanisms by which it causes cardiotoxicity. MATERIALS AND METHODS: UPLC-Q-Exactive Orbitrap MS and network toxicology were used to identify and predict the potential toxic components, related signaling pathways. Then, we used acute and sub-acute toxicity experiments to reveal the apparent phenomenon of HCSc-induced cardiotoxicity. Finally, we combined transcriptomics and metabolomics to elucidate the potential mechanism of action, and verified the putative mechanism by molecular docking, RT-qPCR, and Western blot. RESULTS: We found 8 toad bufadienolides components may be induced cardiac toxicity HCSc main toxic components. Through toxicity experiments, we found that high dose of HCSc could increase a variety of blood routine indexes, five cardiac enzymes, heart failure indexes (BNP), troponin (cTnI and cTnT), heart rate and the degree of heart tissue damage, while low-dose of HCSc had no such changes. In addition, by molecular docking, found that 8 kinds of main toxic components and cAMP, AMPK, IL1ß, mTOR all can be a very good combination, especially in the cAMP. Meanwhile, RT-qPCR and Western blot results showed that HCSc could induce cardiotoxicity by regulating a variety of heart-related differential genes and activating the cAMP signaling pathway. CONCLUSIONS: In this study, network toxicology, transcriptomics and metabolomics were used to elucidate the complex mechanism of possible cardiotoxicity induced by high-dose HCSc. Animal experiments, molecular docking, Western blot and RT-qPCR experiments were also used to verify the above mechanism. These findings will inform further mechanistic studies and provide theoretical support for its safe clinical application.


Subject(s)
Cardiotoxicity , Metabolomics , Transcriptome , Animals , Metabolomics/methods , Male , Transcriptome/drug effects , Rats , Bufanolides/toxicity , Molecular Docking Simulation , Rats, Sprague-Dawley , Network Pharmacology , Capsules , Signal Transduction/drug effects , Gene Expression Profiling/methods , Anura
2.
J Colloid Interface Sci ; 678(Pt C): 536-546, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39305621

ABSTRACT

The oxygen evolution reaction (OER) is a critical process in electrochemical energy storage and conversion systems. The adsorbate evolution mechanism (AEM) pathway possesses the characteristics of high stability but slow catalytic kinetics. We propose that combining AEM with the lattice oxidation mechanism (LOM) pathway can potentially enhance the OER catalytic activity and stability. However, the triggering of LOM is an important challenge due to the high thermodynamic activation barrier of lattice oxygen. To solve this problem, we performed theoretical calculations and experiments which suggest that the introduction of low-valent Cu in CoOOH (CuxCo1-xOOH) could directionally modulate the local coordination environment of CoO bonds. This approach can activate lattice oxygen and generate oxygen vacancies to enhance the nucleophilic attack of *OH and directly establish OO coupling, thereby facilitating the smoothly switching from AEM to LOM pathway by increasing voltage and thus activating lattice oxygen in CuxCo1-xOOH. The switching of AEM and LOM enables CuxCo1-xOOH showing an outstanding overpotential of only 252 mV (10 mA cm-2) and durability of only 2.80 % degradation after 280h. This work provides a new way for designing efficient and stable electrocatalysts with AEM and LOM pathway switching.

3.
Clin Neurophysiol ; 167: 92-105, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39305793

ABSTRACT

OBJECTIVE: Transcranial focused ultrasound (TUS) can suppress human motor cortical excitability. However, it is unclear whether the TUS may interact with transcranial magnetic stimulation (TMS) when they co-delivered in multiple trials. METHODS: Nineteen subjects received three different TUS-TMS co-stimulation protocols to the motor cortex including concurrent stimulation (TUS-TMS-C), separated stimulation (TUS-TMS-S), and TMS only. In each condition, two runs of 30 stimulation trials were conducted with a five-minute rest between runs. Motor-evoked potentials (MEP) were recorded during stimulation and at 0, 10, 20, and 30 min after stimulation. The MEP amplitudes after intervention were normalized to the mean pre-intervention MEP amplitude and expressed as MEP ratios. An additional test with TUS alone was applied to all participants to assess whether TUS itself can elicit after-effects. RESULTS: There were no significant after-effects of all three interventions on MEP ratios. However, 11 subjects who showed online inhibition (OI + ) during the TUS-TMS-C protocol, defined as having MEP ratio less than 1 during TUS-TMS-C, showed significant MEP suppression at 10, 20 and 30 min after TUS-TMS-C. In 8 subjects did not show online inhibition (OI-), defined as having MEP ratios greater than 1 during TUS-TMS-C, showed no significant inhibitory after-effects. OI + and OI- status did not change in a follow-up repeat TUS-TMS-C test. TUS alone did not generate inhibitory after-effects in either OI + or OI- participants. CONCLUSIONS: Our results showed that co-delivery of TUS and TMS can elicit inhibitory after-effect in subjects who showed online inhibition, suggesting that TUS and TMS may interact with each other to produce plasticity effects. SIGNIFICANCE: TUS and TMS may interact with each other to modulate cortical excitability.

4.
Front Endocrinol (Lausanne) ; 15: 1446714, 2024.
Article in English | MEDLINE | ID: mdl-39301321

ABSTRACT

Background: Stress hyperglycemia is now more common in intensive care unit (ICU) patients and is strongly associated with poor prognosis. Whether this association exists in critically ill patients with cardiogenic shock (CS) is unknown. This study investigated the prognostic relationship of stress hyperglycemia on critically ill patients with CS. Methods: We included 393 critically ill patients with CS from the MIMIC IV database in this study and categorized the patients into four groups based on quartiles of Stress hyperglycemia ratio (SHR). We assessed the correlation between SHR and mortality using restricted cubic spline analysis and Cox proportional hazards models. The primary outcomes observed were ICU mortality and hospitalization mortality. Results: The mean age of the entire study population was 68 years, of which 30% were male (118 cases). There was no significant difference between the four groups in terms of age, gender, BMI, and vital signs (P>0.05). There was an increasing trend in the levels of lactate (lac), white blood cell count (WBC), glutamic oxaloacetic transaminase (AST), glucose and Hemoglobin A1C (HbA1c) from group Q1 to group Q2, with the greatest change in patients in group Q4 (P<0.05) and the patients in group Q4 had the highest use of mechanical ventilation, the longest duration of mechanical ventilation, ICU stay and hospital stay. After adjusting for confounders, SHR was found to be strongly associated with patient ICU mortality, showing a U-shaped relationship. Conclusion: In critically ill patients with CS, stress hyperglycemia assessed by SHR was significantly associated with patient ICU mortality.


Subject(s)
Critical Illness , Hyperglycemia , Shock, Cardiogenic , Humans , Shock, Cardiogenic/mortality , Shock, Cardiogenic/blood , Shock, Cardiogenic/etiology , Male , Female , Critical Illness/mortality , Hyperglycemia/mortality , Hyperglycemia/blood , Hyperglycemia/complications , Aged , Prognosis , Middle Aged , Intensive Care Units/statistics & numerical data , Hospital Mortality , Blood Glucose/analysis , Blood Glucose/metabolism , Stress, Physiological
5.
Rep Prog Phys ; 87(10)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39260394

ABSTRACT

Thechirality-controlled two-mode Lipkin-Meshkov-Glick (LMG) modelsare mimicked in a potential hybrid quantum system, involving two ensembles of solid-state spins coupled to a pair of interconnected surface-acoustic-wave cavities. With the assistance of dichromatic classical optical drives featuring chiral designs, it can simulate two-mode LMG-type long-range spin-spin interactions with left-right asymmetry. For applications, this unconventional LMG model can not only engineer both ensembles of collective spins into two-mode spin-squeezed states but also simulate novel quantum critical phenomena and time crystal behaviors, among others. Since this acoustic-based system can generate ion-trap-like interactions without requiring any additional trapping techniques, our work is considered a fresh attempt at realizing chiral quantum manipulation of spin-spin interactions using acoustic hybrid systems.

6.
Sci Rep ; 14(1): 21496, 2024 09 14.
Article in English | MEDLINE | ID: mdl-39277661

ABSTRACT

Using GIS technology, this study investigated the spatiotemporal distribution pattern of influenza incidence in Xinjiang from 2014 to 2023 based on influenza surveillance data. The study revealed a noticeable fluctuation trend in influenza incidence rates in Xinjiang, particularly notable spikes observed in 2019 and 2023. The results of the 3-year moving average showed a significant long-term upward trend in influenza incidence rates, confirmed by Theil-Sen method (MAD = 2.202, p < 0.01). Global spatial autocorrelation analysis indicated significant positive spatial autocorrelation in influenza incidence rates from 2016 and from 2018 to 2023 (Moran's I > 0, P < 0.05). Local spatial autocorrelation analysis further revealed clustering patterns in different regions, with high-high clustering and low-high clustering predominating in northern Xinjiang, and low-low clustering predominating in southern Xinjiang. Hotspot analysis indicated a progressive rise in the number of influenza incidence hotspots, primarily concentrated in northern Xinjiang, particularly in Urumqi, Ili Kazakh Autonomous Prefecture, and Hotan Prefecture. Standard deviation ellipse analysis and the trajectory of influenza incidence gravity center migration showed that the transmission range of influenza in Xinjiang has been expanding, with the epidemic center gradually moving northward. The spatiotemporal heterogeneity of influenza incidence in Xinjiang highlights the need for differentiated and precise influenza prevention and control strategies in different regions to address the changing trends in influenza prevalence.


Subject(s)
Geographic Information Systems , Influenza, Human , Spatio-Temporal Analysis , Humans , Influenza, Human/epidemiology , China/epidemiology , Incidence
7.
Genes Dis ; 11(6): 101330, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39286657

ABSTRACT

Resistance to sorafenib, an effective first-line treatment for advanced hepatocellular carcinoma (HCC), greatly compromised the prognosis of patients. The extracellular matrix is one of the most abundant components of the tumor microenvironment. Beyond acting as a physical barrier, it remains unclear whether cell interactions and signal transduction mediated by the extracellular matrix contribute to sorafenib resistance. With the analysis of primary HCC organoid RNA-seq data combined with in vivo and in vitro experiments validation, we discovered that fibronectin extra domain A (FN-EDA) derived from cancer-associated fibroblasts played a critical role in sorafenib resistance. Mechanistically, FN-EDA stimulates the up-regulation of the key one-carbon metabolism enzyme SHMT1 in HCC cells via the TLR4/NF-κB signaling pathway, thereby countering the oxidative stress induced by sorafenib. Moreover, we reinforced the clinical significance of our discoveries by conducting in vivo assays with an immunodeficiency subcutaneous xenograft tumor model, which was established using primary cancer-associated fibroblasts derived from clinical HCC tissues, and through the analysis of HCC samples obtained from The Cancer Genome Atlas (TCGA) database. Our findings suggest that targeting the FN-EDA/SHMT1 pathway could be a potential strategy to improve sorafenib responsiveness in HCC patients.

8.
Acta Pharm Sin B ; 14(9): 4028-4044, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39309487

ABSTRACT

There are only eight approved small molecule antiviral drugs for treating COVID-19. Among them, four are nucleotide analogues (remdesivir, JT001, molnupiravir, and azvudine), while the other four are protease inhibitors (nirmatrelvir, ensitrelvir, leritrelvir, and simnotrelvir-ritonavir). Antiviral resistance, unfavourable drug‒drug interaction, and toxicity have been reported in previous studies. Thus there is a dearth of new treatment options for SARS-CoV-2. In this work, a three-tier cell-based screening was employed to identify novel compounds with anti-SARS-CoV-2 activity. One compound, designated 172, demonstrated broad-spectrum antiviral activity against multiple human pathogenic coronaviruses and different SARS-CoV-2 variants of concern. Mechanistic studies validated by reverse genetics showed that compound 172 inhibits the 3-chymotrypsin-like protease (3CLpro) by binding to an allosteric site and reduces 3CLpro dimerization. A drug synergistic checkerboard assay demonstrated that compound 172 can achieve drug synergy with nirmatrelvir in vitro. In vivo studies confirmed the antiviral activity of compound 172 in both Golden Syrian Hamsters and K18 humanized ACE2 mice. Overall, this study identified an alternative druggable site on the SARS-CoV-2 3CLpro, proposed a potential combination therapy with nirmatrelvir to reduce the risk of antiviral resistance and shed light on the development of allosteric protease inhibitors for treating a range of coronavirus diseases.

9.
Heliyon ; 10(17): e37258, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296199

ABSTRACT

Background: Neurodevelopmental disorder with spasticity, cataracts, and cerebellar hypoplasia (NEDSCAC), induced by MED27 gene, is an autosomal recessive rare disorder characterized by widespread developmental delay with varying degrees of intellectual impairment. Other symptoms include limb spasticity, cataracts, and cerebellar hypoplasia. So far there have been limited reports on NEDSCAC. Methods: In this study, we conducted genetic testing on a child presenting with developmental delay as the primary clinical feature. The genetic test results indicated the presence of novel homozygous missense variants c.74G > A, p.(Arg25His) in the MED27 gene. In vitro functional validation experiments, including plasmid construction and cell transfection, Western blotting, and molecular dynamics structural modeling, were performed on the MED27 Arg25His variant. Results: The results demonstrated a significant reduction in protein expression of MED27 Arg25His and indicated may weaken the interaction force between the MED27 subunit and MED14 subunit. Conclusions: This study expands our understanding of MED27 gene variants and their associated clinical phenotypes. Additionally, it contributes to the investigation of the potential pathogenesis of NEDSCAC caused by MED27 gene variants.

10.
Heliyon ; 10(17): e37345, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296227

ABSTRACT

Background: CD276 is a promising immune checkpoint molecule with significant therapeutic potential. Several clinical trials are currently investigating CD276-targeted therapies. Purpose: This study aims to assess the prognostic significance of CD276 expression levels and to predict its expression using a radiomic approach in breast cancer (BC). Methods: A cohort of 840 patients diagnosed with BC from The Cancer Genome Atlas was included in this study. The Cancer Imaging Archive provided 98 magnetic resonance imaging (MRI) scans, which were randomly allocated to training and validation datasets in a 7:3 ratio. The association between CD276 expression and patient survival was assessed using Cox regression analysis. Feature selection was performed using the maximum relevance minimum redundancy algorithm and recursive feature elimination. Subsequently, support vector machine (SVM) and logistic regression (LR) models were constructed to predict CD276 expression. Results: The expression of CD276 was found to be elevated in BC. It was an independent risk factor for overall survival (hazard ratio = 1.579, 95 % CI: 1.054-2.366). There were eight radiomic features selected in total. In both the training and validation subsets, the SVM and LR models demonstrated favorable predictive abilities with AUC values of 0.744 and 0.740 for the SVM model and 0.742 and 0.735 for the LR model. These results indicate that the radiomic models efficiently differentiate the CD276 expression status. Conclusions: CD276 expression levels can have an impact on cancer prognosis. The MRI-based radiomic signature described in this study can discriminate the CD276 expression status.

11.
Nat Commun ; 15(1): 8356, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333137

ABSTRACT

Ag2Se shows significant potential for near-room-temperature thermoelectric applications, but its performance and device design are still evolving. In this work, we design a novel flexible Ag2Se thin-film-based thermoelectric device with optimized electrode materials and structure, achieving a high output power density of over 65 W m-2 and a normalized power density up to 3.68 µW cm-2 K-2 at a temperature difference of 42 K. By fine-tuning vapor selenization time, we strengthen the (013) orientation and carrier mobility of Ag2Se films, reducing excessive Ag interstitials and achieving a power factor of over 29 µW cm-1 K-2 at 393 K. A protective layer boosts flexibility of the thin film, retaining 90% performance after 1000 bends at 60°. Coupled with p-type Sb2Te3 thin films and rational simulations, the device shows rapid human motion response and precise servo motor control, highlighting the potential of high-performance Ag2Se thin films in advanced applications.

12.
Article in English | MEDLINE | ID: mdl-39348867

ABSTRACT

We study a hybrid system of a plasmonic cavity coupled to a pair of different molecular vibration modes with the strong optomechanical-like interactions. Here, this plasmonic cavity is considered as a quantum data bus and then assist several applications. For instance, it can first establish a bimolecular interface to ensure the reciprocal or non-reciprocal information transmission, and then engineer both molecules into the steady-state quantum entanglement of the continuous variable through the dissipative method. In contrast to the traditional optomechanical system, this hybrid system can provide the stronger optomechanical-like interactions and more convenient controls to the molecular quantum units. This investigation is believed to be able to further expand the practical application range of quantum technology. .

13.
Theriogenology ; 230: 203-211, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39332380

ABSTRACT

This study investigated the potential role and underlying mechanisms of oleanolic acid (OA), a pentacyclic triterpene with antioxidant and anti-inflammatory properties, in porcine oocytes during in vitro maturation (IVM). The results showed that supplementation with 5 µM OA during IVM resulted in a greater percentage of mature oocytes, parthenogenetically activated embryos and somatic cell nuclear-transferred embryos. This was evidenced by significant increases in the rate of first polar body expulsion, the expansion of cumulus granulosa cells and the total cell number in blastocysts. Further analysis revealed that OA promoted fatty acid accumulation and upregulated the mRNA expression of genes involved in fatty acid ß-oxidation. OA significantly increased the intracellular mitochondrial membrane potential and ATP levels and effectively inhibited BAX/BCL2 and Cleaved Caspase3 protein expression. Notably, OA increased the protein levels of intracellular Nrf2 and HO-1, and the GSH levels and the activities of the antioxidant enzymes SOD and catalase (CAT), while reducing ROS levels. Mechanistically, OA activated the Nrf2/HO-1 signalling pathway, which is crucial for regulating the expression of antioxidant-related targets in IVM porcine oocytes. Our findings indicated that OA improved antioxidant capacity by activating the Nrf2/HO-1 signalling pathway, thereby promoting porcine oocyte maturation.

14.
Cell Rep ; 43(10): 114756, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39325621

ABSTRACT

Upon infection with herpes simplex virus 1 (HSV-1), the virus deploys multiple strategies to evade the host's innate immune response. However, the mechanisms governing this phenomenon remain elusive. Here, we find that HSV-1 leads to a decrease in overall m6A levels by selectively reducing METTL14 protein during early infection in glioma cells. Specifically, the HSV-1-encoded immediate-early protein ICP0 interacts with METTL14 within ND10 bodies and serves as an E3 ubiquitin protein ligase, targeting and ubiquitinating METTL14 at the lysine 156 and 162 sites. Subsequently, METTL14 undergoes proteasomal degradation. Furthermore, METTL14 stabilizes ISG15 mRNA mediated by IGF2BP3 to promote antiviral effects. Notably, METTL14 suppression significantly enhances the anti-tumor effect of oncolytic HSV-1 (oHSV-1) in mice bearing glioma xenografts. Collectively, these findings establish that ICP0-guided m6A modification controls the antiviral immune response and suggest that targeting METTL14/ISG15 represents a potential strategy to enhance the oncolytic activity of oHSV-1 in glioma treatment.

15.
Biomicrofluidics ; 18(5): 054101, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39247799

ABSTRACT

Porous polydimethylsiloxane (PDMS) membrane is a crucial element in organs-on-chips fabrication, supplying a unique substrate that can be used for the generation of tissue-tissue interfaces, separate co-culture, biomimetic stretch application, etc. However, the existing methods of through-hole PDMS membrane production are largely limited by labor-consuming processes and/or expensive equipment. Here, we propose an accessible and low-cost strategy to fabricate through-hole PDMS membranes with good controllability, which is performed via combining wet-etching and spin-coating processes. The porous membrane is obtained by spin-coating OS-20 diluted PDMS on an etched glass template with a columnar array structure. The pore size and thickness of the PDMS membrane can be adjusted flexibly via optimizing the template structure and spinning speed. In particular, compared to the traditional vertical through-hole structure of porous membranes, the membranes prepared by this method feature a trumpet-shaped structure, which allows for the generation of some unique bionic structures on organs-on-chips. When the trumpet-shape faces upward, the endothelium spreads at the bottom of the porous membrane, and intestinal cells form a villous structure, achieving the same effect as traditional methods. Conversely, when the trumpet-shape faces downward, intestinal cells spontaneously form a crypt-like structure, which is challenging to achieve with other methods. The proposed approach is simple, flexible with good reproducibility, and low-cost, which provides a new way to facilitate the building of multifunctional organ-on-chip systems and accelerate their translational applications.

17.
Ital J Pediatr ; 50(1): 172, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256844

ABSTRACT

BACKGROUND: Prematurity-related brain injury is a common and serious complication that has long-term effects on the survival and development of affected infants. Currently, the roles of certain biomarkers such as the protein hydrolysis product SBDP145, melatonin, soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), high mobility group box 1 protein (HMGB1), and hypoxia-inducible factor 1-alpha (HIF-1α) in prematurity-related brain injury remain not fully elucidated. Our study aims to assess the significance of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in preterm infants with brain injury. METHODS: 135 preterm infants admitted to our hospital from January 2020 to February 2022 were selected and divided into 78 cases in a prematurity-associated brain injury group, and 57 cases in another group of preterm infants without brain injury or other diseases according to the magnetic resonance imaging results. The levels of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in the two groups were analyzed. The serum concentrations of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in newborns with different severity of ventricular hemorrhage were observed, and the levels of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α in those with different severity of white matter brain injury were compared. RESULTS: The levels of SBDP145, sLOX-1, HMGB1 and HIF-1α were significantly higher in the preterm combined brain injury group than in the preterm group, and melatonin levels were significantly lower than in the preterm group(P < 0.05). The levels of SBDP145, sLOX-1, HMGB1 and HIF-1α were higher in the moderate to severe group and melatonin levels were lower in the mild group of newborns with ventricular hemorrhage (P < 0.05). The levels of SBDP145, sLOX-1, HMGB1 and HIF-1α were higher in the moderate-severe group and melatonin levels were lower in the mild group in newborns with cerebral white matter injury (P < 0.05). The independent variables were SBDP145, melatonin, sLOX-1, HMGB1, HIF-1α, and the dependent variable was the prognosis of neonates with brain injury. Univariate logistic regression analysis and multivariate logistic regression analysis were performed. The results showed that the influencing factors of newborns with brain injury were SBDP145, melatonin, sLOX-1, HMGB1, HIF-1α. CONCLUSION: The levels of SBDP145, melatonin, sLOX-1, HMGB1 and HIF-1α were highly expressed in preterm newborns with brain injury, and the levels were higher when the condition of the newborns was more severe. These findings suggest the potential clinical utility of these biomarkers in predicting and monitoring brain injury in preterm infants, which could aid in early intervention and improve long-term outcomes.


Subject(s)
Biomarkers , Brain Injuries , HMGB1 Protein , Hypoxia-Inducible Factor 1, alpha Subunit , Infant, Premature , Melatonin , Humans , Infant, Newborn , HMGB1 Protein/blood , Melatonin/blood , Male , Female , Biomarkers/blood , Hypoxia-Inducible Factor 1, alpha Subunit/blood , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Brain Injuries/blood , Brain Injuries/metabolism , Infant, Premature, Diseases/blood
18.
BMC Cancer ; 24(1): 1112, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242532

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC), a prevalent primary malignant tumor, is notorious for its high mortality rate. Despite advancements in HCC treatment, patient outcomes remain suboptimal. This study endeavors to assess the potential prognostic significance of POLH-AS1 in HCC. METHODS: In this research, we gathered RNA-Seq information from individuals with HCC in The Cancer Genome Atlas (TCGA). We analyzed the levels of POLH-AS1 expression in both HCC cells and tissues using statistical tests. Additionally, we examined various prognostic factors in HCC using advanced methodologies. Furthermore, we employed Spearman's rank correlation analysis to examine the association between POLH-AS1 expression and the tumor's immune microenvironment. Finally, the functional roles of POLH-AS1 in HCC were validated in two HCC cell lines (HEP3B and HEPG2). RESULTS: Our analysis revealed elevated POLH-AS1 expression across various cancers, including HCC, with heightened expression correlating with HCC progression. Notably, POLH-AS1 expression emerged as a potential biomarker for HCC patient survival and prognosis. Mechanistically, we identified the involvement of POLH-AS1 in tumorigenesis pathways such as herpes simplex virus 1 infection, interactions with neuroactive receptors, and the cAMP signaling pathway. Lastly, inhibition of POLH-AS1 was discovered to hinder the proliferation, invasion and migration of HEP3B and HEPG2 HCC cells. CONCLUSIONS: POLH-AS1 emerges as a promising prognostic biomarker and therapeutic target for HCC, offering potential avenues for enhanced patient management and treatment strategies.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Prognosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Cell Proliferation , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Movement , Hep G2 Cells
19.
Cancer Cell Int ; 24(1): 328, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342235

ABSTRACT

Autophagy is a cellular process that involves the degradation and recycling of cellular components, including damaged proteins and organelles. It is an important mechanism for maintaining cellular homeostasis and has been implicated in various diseases, including cancer. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but instead play regulatory roles in gene expression. Emerging evidence suggests that lncRNAs can influence autophagy and contribute to the development and progression of colorectal cancer (CRC). Several lncRNAs have been identified as key players in modulating autophagy in CRC. The dysregulation of autophagy and non-coding RNAs (ncRNAs) in CRC suggests a complex interplay between these two factors in the pathogenesis of the disease. Modulating autophagy may sensitize cancer cells to existing therapies or improve the efficacy of new treatment approaches. Additionally, targeting specific lncRNAs involved in autophagy regulation could potentially be used as a therapeutic intervention to inhibit tumor growth, metastasis, and overcome drug resistance in CRC. In this review, a thorough overview is presented, encompassing the functions and underlying mechanisms of autophagy-related lncRNAs in a range of critical areas within tumor biology. These include cell proliferation, apoptosis, migration, invasion, drug resistance, angiogenesis, and radiation resistance.

20.
Int Immunopharmacol ; 142(Pt A): 113082, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260308

ABSTRACT

BACKGROUND: Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a common complication of rheumatoid arthritis (RA) that result in significant morbidity and mortality. Understanding the molecular mechanisms underlying RA-ILD is crucial for effective prevention. This study aims to identify the specific molecule that mediate the causal association between RA and ILD, as well as to explore its potential mechanisms in the pathogenesis of RA-ILD. METHODS: Using two-sample Mendelian randomization (MR) analyses, we investigated the causal relationship among 16,987 blood genes, RA and ILD. Subsequently, a two-step MR technique was employed to identify significant genes that mediate the association between RA and ILD, and to quantify their proportion of mediation effect. To validate the genes as mediators, the replication MR analysis was conducted and the in vivo experiment was performed using an established animal model of RA-ILD. Furthermore, integrated bioinformatic analyses were conducted to elucidate the specific biological functions of the determined mediator in pathogenesis of RA-ILD. RESULTS: Nine genes, namely MAPK8IP2, TAF11, SLAMF1, DAB2IP, GLUL, SLC4A10, PRSS35, NFX1, and PLK3, were identified as mediators. Among them, SLAMF1 was validated as the most significant mediator, accounting for 4.693% of the mediating effect on the causal relationship between RA and ILD. Upregulated mRNA expression of SLAMF1 was observed in the animal model of RA-ILD compared to controls. Bioinformatic analyses revealed that SLAMF1 was overexpressed in patients with lung fibrosis and correlated with a poor prognosis. Specifically, SLAMF1 was found to be predominantly overexpressed in T cells in lung tissues of patients with lung fibrosis. Additionally, the functional role of SLAMF1 was associated with multiple immune cell infiltrations and the biological process of extracellular matrix synthesis in pulmonary tissues from patients with lung fibrosis. CONCLUSION: SLAMF1 may play a crucial role as a molecular mediator in the causal association between RA and ILD, and participate in multiple mechanisms underlying the pathogenesis of RA-ILD. This research provides insights into how the development of RA influences the risk of ILD and offers potential interventional targets against RA-ILD.

SELECTION OF CITATIONS
SEARCH DETAIL