Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.335
Filter
1.
Hepatol Commun ; 8(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967581

ABSTRACT

HCC is globally recognized as a major health threat. Despite significant progress in the development of treatment strategies for liver cancer, recurrence, metastasis, and drug resistance remain key factors leading to a poor prognosis for the majority of liver cancer patients. Thus, there is an urgent need to develop effective biomarkers and therapeutic targets for HCC. Collagen, the most abundant and diverse protein in the tumor microenvironment, is highly expressed in various solid tumors and plays a crucial role in the initiation and progression of tumors. Recent studies have shown that abnormal expression of collagen in the tumor microenvironment is closely related to the occurrence, development, invasion, metastasis, drug resistance, and treatment of liver cancer, making it a potential therapeutic target and a possible diagnostic and prognostic biomarker for HCC. This article provides a comprehensive review of the structure, classification, and origin of collagen, as well as its role in the progression and treatment of HCC and its potential clinical value, offering new insights into the diagnosis, treatment, and prognosis assessment of liver cancer.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Collagen , Liver Neoplasms , Tumor Microenvironment , Humans , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Biomarkers, Tumor/analysis , Collagen/metabolism , Prognosis , Disease Progression
2.
BMC Womens Health ; 24(1): 379, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956558

ABSTRACT

BACKGROUND: Breast cancer has become a major public health problem in the current society, and its incidence rate ranks the first among Chinese female malignant tumors. This paper once again confirmed the efficacy of lncRNA in tumor regulation by introducing the mechanism of the diagnosis of breast cancer by the MIR497HG/miR-16-5p axis. METHODS: The abnormal expression of MIR497HG in breast cancer was determined by RT-qPCR method, and the correlation between MIR497HG expression and clinicopathological characteristics of breast cancer patients was analyzed via Chi-square test. To understand the diagnostic potential of MIR497HG in breast cancer by drawing the receiver operating characteristic curve (ROC). The overexpressed MIR497HG (pcDNA3.1-MIR497HG) was designed and constructed to explore the regulation of elevated MIR497HG on biological function of BT549 and Hs 578T cells through Transwell assays. Additionally, the luciferase gene reporter assay and Pearson analysis evaluated the targeting relationship of MIR497HG to miR-16-5p. RESULTS: MIR497HG was decreased in breast cancer and had high diagnostic function, while elevated MIR497HG inhibited the migration and invasion of BT549 and Hs 578T cells. In terms of functional mechanism, miR-16-5p was the target of MIR497HG, and MIR497HG reversely regulated the miR-16-5p. miR-16-5p mimic reversed the effects of upregulated MIR497HG on cell biological function. CONCLUSIONS: In general, MIR497HG was decreased in breast cancer, and the MIR497HG/miR-16-5p axis regulated breast cancer tumorigenesis, providing effective insights for the diagnosis of patients.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , Female , Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Middle Aged , Cell Proliferation/genetics
3.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973083

ABSTRACT

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

4.
Front Pharmacol ; 15: 1337179, 2024.
Article in English | MEDLINE | ID: mdl-38974037

ABSTRACT

Background: The effectiveness and safety of using Brucea javanica oil (BJO) in combination with Transarterial Chemoembolization (TACE) for liver cancer treatment are subjects of debate. This study aims to assess the comparative effectiveness and safety of BJO-assisted TACE versus TACE alone and quantifies the differences between these two treatment methods. Methods: A systematic search was conducted in multiple databases including PubMed, Cochrane, CNKI, and Wanfang, until 1 July 2023. Meta-analysis was conducted, and the results were presented as mean difference (MD), risk ratio (RR), and 95% confidence intervals (CI). Results: The search yielded 11 RCTs, with a combined sample size of 1054 patients. Meta-analysis revealed that BJO-assisted TACE exhibited superior outcomes compared to standalone TACE. Specific data revealed that BJO-assisted TACE improves clinical benefit rate by 22% [RR = 1.22, 95% CI (1.15, 1.30)], increases the number of people with improved quality of life by 32%, resulting in an average score improvement of 9.53 points [RR = 1.32, 95% CI (1.22, 1.43); MD = 9.53, 95% CI (6.95, 12.10)]. Furthermore, AFP improvement rate improved significantly by approximately 134% [RR = 2.34, 95% CI (1.58, 3.46)], accompanied by notable improvements in liver function indicators, with an average reduction of 27.19 U/L in AST [MD = -27.19, 95% CI (-40.36, -14.02)], 20.77 U/L in ALT [MD = -20.77, 95% CI (-39.46, -2.08)], 12.17 µmol/L in TBIL [MD = -12.17, 95% CI (-19.38, -4.97)], and a decrease of 43.72 pg/mL in VEGF [MD = -43.72, 95% CI (-63.29, -24.15)]. Most importantly, there was a 29% reduction in the occurrence of adverse reactions [RR = 0.71, 95% CI (0.60, 0.84)]. Conclusion: These findings indicate that BJO-assisted TACE may be considered as a potentially beneficial treatment option for liver cancer patients when compared to standalone TACE. It appears to contribute to improved treatment outcomes, enhanced quality of life, and potentially reduced adverse reactions, suggesting it warrants further investigation as a promising approach for liver cancer treatment. Systematic Review Registration: identifier CRD42023428948.

5.
Cardiovasc Diagn Ther ; 14(3): 419-446, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975001

ABSTRACT

Background: The overall prevalence of dyslipidemia continues to increase, which poses a significant risk for coronary artery disease. Some patients with dyslipidemia do not respond to or benefit from conventional lipid-lowering therapy, which warrants the need for alternative and complementary therapies. Chinese patent medicine (CPM) has shown great potential in the treatment of dyslipidemia, but its clinical value needs to be further explored. This study aims to systematically evaluate the efficacy and safety of CPM in treating dyslipidemia. Methods: This study was registered in INPLASY as INPLASY202330090. The randomized controlled trials included in this study were published in January 2013 to March 2023 and retrieved from the Web of Science, PubMed, Embase, Cochrane Library, SinoMed, China National Knowledge Internet, WanFang, and VIP. The bias risk in the study was independently evaluated by two reviewers using the Cochrane Randomized Trial Bias Risk Tool (RoB 2) Review Manager 5.4 software was used for the overall effect analysis and subgroup analysis of four blood lipids, and the trial sequential analysis (TSA) was conducted to check the results. Results: A total of 69 studies were included, involving 6,993 participants. The methodological quality was in the middle level. Meta-analysis showed that CPM markedly improved the levels of total cholesterol (TC) [mean difference (MD) =-0.54 mmol/L; 95% confidence interval (CI): -0.71 to -0.37; P<0.001], triglyceride (TG) (MD =-0.43 mmol/L; 95% CI: -0.53 to -0.33; P<0.001), low-density lipoprotein cholesterol (LDL-C) (MD =-0.40 mmol/L; 95% CI: -0.50 to -0.30; P<0.001) and increased levels of high-density lipoprotein cholesterol (HDL-C) (MD =0.23 mmol/L; 95% CI: 0.18 to 0.27; P<0.001), in patients with dyslipidemia. Though CPM did not differ significantly from statins when used alone, it could improve lipid profile better in all cases when used in combination with statins and with drugs used for comorbidities or co-morbidities. Subgroup analysis found that the efficacy of pill formulations was superior to other formulations, and CPM showed better lipid-lowering response in the context of comorbidity. The TSA confirmed the robustness of the analysis of the LDL-C level. No significant difference was observed in the incidence of adverse events between the treatment group and the control group [risk ratio (RR) =0.89; 95% CI: 0.69-1.16; P=0.40]. Conclusions: CPM can yield superior therapeutic effects in ameliorating dyslipidemia without exacerbating adverse effects as an alternative and complementary therapy. In addition, the therapeutic effect can be improved by emphasizing pill formulation and strengthening the standardization of syndromes.

6.
Mitochondrial DNA B Resour ; 9(6): 841-844, 2024.
Article in English | MEDLINE | ID: mdl-38919809

ABSTRACT

Cyprinus acutidorsalis (Wang, 1979) is an endemic fish in China that is sparsely distributed in the Hainan provinces and Guangxi Zhuang Autonomous Region (GZAR). In this study, the complete mitochondrial genome of C. acutidorsalis from the Hainan population from the Wanquan River was sequenced, and its phylogenetic relationship was analyzed. The circular mtDNA was 16,581 bp in length, and the overall base composition was A (32.0%), C (27.5%), T (24.8%), and G (15.70%), with a slight bias toward A + T. The complete mitogenome encoded 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a control region. Phylogenetic analysis indicated that the most closely related fish to C. acutidorsalis from the Hainan population was C. acutidorsalis from the Guangxi population. These findings offer basic molecular data and a better understanding of the phylogenetic relationships among the Cyprinus species.

7.
Heliyon ; 10(11): e32288, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912485

ABSTRACT

Liver cancer is a heterogeneous disease characterized by poor responses to standard therapies and therefore unfavourable clinical outcomes. Understanding the characteristics of liver cancer and developing novel therapeutic strategies are imperative. Ferroptosis, a type of programmed cell death induced by lipid peroxidation, has emerged as a potential target for treatment. Naringenin, a natural compound that modulates lipid metabolism by targeting AMPK, shows promise in enhancing the efficacy of ferroptosis inducers. In this study, we utilized liver cancer cell lines and xenograft mice to explore the synergistic effects of naringenin in combination with ferroptosis inducers, examining both phenotypic outcomes and molecular mechanisms. Our study results indicate that the use of naringenin at non-toxic doses to hepatocytes can significantly enhance the anticancer effects of ferroptosis inducers (erastin, RSL3, and sorafenib). The combination index method confirmed a synergistic effect between naringenin and ferroptosis inducers. In comparison to naringenin or ferroptosis inducers alone, the combined therapy caused more robust lipid peroxidation and hence more severe ferroptotic damage to cancer cells. The inhibition of aerobic glycolysis mediated by the AMPK-PGC1α signalling axis is the key to naringenin's effect on reducing ferroptosis resistance in liver cancer, and the synergistic cytotoxic effect of naringenin and ferroptosis inducers on cancer cells was reversed after pretreatment with an AMPK inhibitor or a PGC1α inhibitor. Taken together, these findings suggest that naringenin could boost cancer cell sensitivity to ferroptosis inducers, which has potential clinical translational value.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124591, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38850818

ABSTRACT

As an emerging marine pollutant, microplastics represent a focal point in global monitoring and management efforts. With seawater accounts for 97 % of the total global water resources, scientific assessments of microplastics in seawater are crucial for pollution control and management of marine environments. This study focuses on investigating microplastics in near-shore seawater and proposes a rapid and accurate detection method using a constructed confocal Raman spectroscopy detection system. By optimizing the pretreatment process of seawater microplastic samples, the efficient removal of organic matter interference in microplastic detection is achieved. Employing fluorescent labeling addresses the issues of prolonged detection time and high false positive rates associated with traditional methods, enabling rapid differentiation between microplastics and other substances and significantly enhancing detection efficiency and accuracy. Additionally, the use of differential Raman spectroscopy effectively mitigates fluorescence signal interference, thus improving the signal-to-noise ratio of the spectra. By employing dual-wavelength laser excitation at 784 nm/785 nm, microplastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS) ranging in size from 60 to 500 µm are successfully detected in seawater. The results demonstrate that the proposed pretreatment method for seawater microplastics and novel detection techniques enable rapid screening and comprehensive non-destructive detection of microplastics in seawater, thereby facilitating the characterization of marine microplastics and providing scientific support for enhancing the management of microplastic pollution and ecological risk control.

9.
Heliyon ; 10(11): e31626, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841475

ABSTRACT

Understanding public emotion on social media about community wellness is crucial for enhancing health awareness and guiding policy-making. In order to more fully mine the deep contextual semantical information of short texts and further enhance the effectiveness of emotion prediction in social media, we propose the Deep Parallel Contextual Analysis Framework (DPCAF) in the community wellness domain, specifically addressing the challenges of limited text length and available semantical features in social media text. Specifically, at the embedding layer, we first utilize two different word embedding techniques to generate high-quality vector representations, aiming to achieve more comprehensive semantical capture, stronger generalization ability, and more robust model performance. Subsequently, in the deep contextual layer, the obtained representations are fused with POS and locational representations, and processed through a deep parallel layer composed of Convolutional Neural Networks and Bidirectional Long Short-Term Memory Network. An attention model is then used to further extract semantical features of social media texts. Finally, these deep parallel contextual representations are post-integrated for emotion prediction. Experiments on a dataset collected from social media regarding community wellness demonstrate that compared to benchmark models, DPCAF achieves at least a 4.81 % increase in Precision, a 3.44 % increase in Recall, and a 10.81 % increase in F1-score. Relative to the most advanced models, DPCAF shows a minimum improvement of 2.65 % in Precision, 3.02 % in Recall, and 2.53 % in F1-score.

10.
Transl Androl Urol ; 13(5): 812-827, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38855608

ABSTRACT

Background: Solasonine has been demonstrated to exert an inhibitory effect on bladder cancer (BC), but the potential mechanisms remain unclear. Therefore, the aim of this study is to explore the association between microRNAs (miRNAs)-mediated regulation and the anti-tumor activities of solasonine in BC. Methods: MiRNA sequencing was performed to identify the differentially expressed microRNAs (DE-miRNAs) associated with solasonine in BC cells. Functional enrichment analyses of the DE-miRNAs activated and inhibited by solasonine were then conducted. The DE-miRNAs with prognostic value for BC and those differentially expressed in the BC samples were subsequently identified as the hub DE-miRNAs. After identifying the messenger RNAs (mRNAs) that were targeted by the hub DE-miRNAs and those differentially expressed in the BC samples, a protein-protein interaction analysis was performed to identify the core downstream genes, which were then used to construct a solasonine-miRNA-mRNA regulatory network. Results: A total of 27 activated and 19 inhibited solasonine-mediated DE-miRNAs were identified that were found to be associated with several tumor-related biological functions and pathways. After integrating the results of the survival analysis and expression assessment, the following nine hub DE-miRNAs were identified: hsa-miR-127-3p, hsa-miR-450b-5p, hsa-miR-99a-5p, hsa-miR-197-3p, hsa-miR-423-3p, hsa-miR-4326, hsa-miR-625-3p, hsa-miR-625-5p, and hsa-miR-92a-3p. The DE-mRNAs targeted by the hub DE-miRNAs were predicted, and 30 core downstream genes were used to construct the solasonine-miRNA-mRNA regulatory network. miR-450b-5p was shown to be associated with the most mRNAs in this network, which suggests that it plays a crucial role in the solasonine-mediated anti-BC effect. Conclusions: A regulatory network, including solasonine, miRNAs, and mRNAs related to BC, was constructed. This network provides extensive insights into the molecular regulatory mechanisms that underlie the anti-cancer efficacy of solasonine in BC.

11.
Mitochondrial DNA B Resour ; 9(6): 720-724, 2024.
Article in English | MEDLINE | ID: mdl-38859915

ABSTRACT

Polygonatum hunanense H.H. Liu & B.Z. Wang (2021) and P. verticillatum (L.) All. (1875) have been widely used as foods and as folk medicines in China and India, and P. caulialatum S. R. Yi (2021) has recently been described as a new medical plant in China. There is at present a lack of genome information regarding the species. Hence, this study reports the complete chloroplast genomes of the three species. The genomes of P. hunanense, P. verticillatum, and P. caulialatum were 155,583 bp, 155,650 bp, and 155,352 bp in length, respectively. They contained large single-copy (LSC) regions of 84,412 bp, 84,404 bp, and 84,285 bp, small single-copy (SSC) regions of 18,427 bp, 18,416 bp, and 18,463 bp, and a pair of inverted repeats of 26,372 bp, 26,415 bp, and 26,302 bp, respectively. The chloroplast genomes of P. hunanense, P. verticillatum, and P. caulialatum had 133 (103 unique) genes, consisting of 87 protein-coding genes, 38 ribosomal ribonucleic acid (RNA) genes, and eight transfer RNA genes, respectively. A maximum-likelihood phylogenetic tree showed that P. kingianum Coll. et Hemsl. var. grandifolium D.M. Liu & W.Z. Zeng (1991) was closer to P. cyrtonema Hua (1892) rather than to P. kingianum Coll. et Hemsl. (1890), further supporting its status as a unique species of the genus. Moreover, P. verticillatum was separated from the easily confused herb P. cirrhifolium (Wall.) Royle (1839), while P. caulialatum was closest to P. humile Fisch. ex Maxim. (1859). This research provides a foundation for further study of these herbs.

12.
Mol Hortic ; 4(1): 25, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898491

ABSTRACT

Prunus conradinae, a valuable flowering cherry belonging to the Rosaceae family subgenus Cerasus and endemic to China, has high economic and ornamental value. However, a high-quality P. conradinae genome is unavailable, which hinders our understanding of its genetic relationships and phylogenesis, and ultimately, the possibility of mining of key genes for important traits. Herein, we have successfully assembled a chromosome-scale P. conradinae genome, identifying 31,134 protein-coding genes, with 98.22% of them functionally annotated. Furthermore, we determined that repetitive sequences constitute 46.23% of the genome. Structural variation detection revealed some syntenic regions, inversions, translocations, and duplications, highlighting the genetic diversity and complexity of Cerasus. Phylogenetic analysis demonstrated that P. conradinae is most closely related to P. campanulata, from which it diverged ~ 19.1 million years ago (Mya). P. avium diverged earlier than P. cerasus and P. conradinae. Similar to the other Prunus species, P. conradinae underwent a common whole-genome duplication event at ~ 138.60 Mya. Furthermore, 79 MADS-box members were identified in P. conradinae, accompanied by the expansion of the SHORT VEGETATIVE PHASE subfamily. Our findings shed light on the complex genetic relationships, and genome evolution of P. conradinae and will facilitate research on the molecular breeding and functions of key genes related to important horticultural and economic characteristics of subgenus Cerasus.

13.
Sci Rep ; 14(1): 14290, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906992

ABSTRACT

To investigate the effect and safety of percutaneous endovascular angioplasty (PEA) with optional stenting for the treatment of severe stenosis or occlusion of subclavian artery, patients with severe stenosis ≥ 70% or occlusion of subclavian artery treated with PEA were retrospectively enrolled. The clinical data were analyzed. A total of 222 patients were retrospectively enrolled, including 151 males (68.0%) and 71 females (32.0%) aged 48-86 (mean 63.9 ± 9.0) years. Forty-seven (21.2%) patients had comorbidities. Subclavian artery stenosis ≥ 70% was present in 201 (90.5%) patients and complete subclavian occlusion in 21 (9.5%) cases. Angioplasty was successfully performed in all (100%) patients. Balloon-expandable stents were used in 190 (85.6%) cases, and self-expandable stents in 20 (9.0%) cases. Only 12 (5.4%) cases were treated with balloon dilation only. Among 210 patients treated with stent angioplasty, 71 (33.8% or 71/210) cases underwent balloon pre-dilation, 139 (66.2% or 139/210) had direct deployment of balloon-expandable stents, and 2 (1.0% or 2/210) experienced balloon post-dilation. Distal embolization protection devices were used in 5 (2.3% or 5/222) cases. Periprocedural complications occurred in 3 (1.4%) patients, including aortic dissection in 2 (0.9%) cases and right middle cerebral artery embolism in 1 (0.5%). No hemorrhage occurred. Among 182 (82.0%) patients with 6-month follow-up, restenosis > 70% occurred in 1 (0.5%) patient, and among 68 (30.6%) patients with 12-month follow-up, restenosis > 70% took place in 11 (16.2%) patients. Percutaneous endovascular angioplasty can be safely and efficiently performed for the treatment of severe stenosis ≥ 70% or occlusion of subclavian artery.


Subject(s)
Stents , Subclavian Artery , Humans , Male , Female , Aged , Middle Aged , Aged, 80 and over , Subclavian Artery/surgery , Retrospective Studies , Stents/adverse effects , Treatment Outcome , Subclavian Steal Syndrome/therapy , Subclavian Steal Syndrome/surgery , Endovascular Procedures/methods , Endovascular Procedures/adverse effects , Angioplasty/methods , Angioplasty/adverse effects , Constriction, Pathologic/therapy , Angioplasty, Balloon/methods , Angioplasty, Balloon/adverse effects , Arterial Occlusive Diseases/therapy , Arterial Occlusive Diseases/surgery
14.
J Oral Pathol Med ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866540

ABSTRACT

BACKGROUND: Oral lichen planus (OLP) is a common T cell-mediated oral mucosal immune inflammatory disease. Intraepithelial lymphocytes (IELs) are a unique subset of T cells that play an important role in regulating immune response. This study aims to investigate the phenotype and the differentiation mechanism of IELs in OLP. METHODS: The expression of CD4, CD8α, CD8ß, T-helper-inducing POZ/Krueppel-like factor (ThPOK), and RUNX family transcription factor 3 (Runx3) in the epithelium and peripheral blood mononuclear cells (PBMCs) of OLP was determined by immunofluorescence and immunohistochemistry. Then, the correlations among them were analyzed. Naïve CD4+ T cells were sorted from blood of OLP patients and stimulated with retinoic acid (RA) and transforming growth factor-ß1 (TGF-ß1). Then the expression of CD4, CD8α, CD8ß, ThPOK, and Runx3 was investigated by immunocytochemistry. RESULTS: CD8α expression and CD8αα+ cells were upregulated in the epithelium of OLP, whereas they were downregulated in PBMCs of OLP. CD8ß was not expressed in the epithelium of OLP. CD4, CD8α, and Runx3 expression and CD4+CD8α+ cells were increased, whereas ThPOK expression was decreased in the epithelium of OLP. CD8α expression was positively correlated with Runx3 expression, whereas ThPOK expression was negatively correlated with Runx3 expression. After RA and TGF-ß1 stimulation, CD8α and Runx3 expression was upregulated, and ThPOK expression was downregulated in naïve CD4+ T cells. CONCLUSION: CD4+CD8αα+ IELs may be the dominant phenotype of IELs in OLP, and the differentiation of CD4+CD8αα+ IELs in OLP is negatively regulated by ThPOK and positively regulated by Runx3.

15.
Heliyon ; 10(11): e32106, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868025

ABSTRACT

Aims: Cellular dormancy is a state of quiescence subpopulation of tumor cells, characterized by low differentiation and lack of mitotic activity. They could evade chemotherapy and targeted therapy, leading to drug resistance and disease recurrence. Recent studies have shown a correlation between dormant cancer cells and unique extracellular matrix (ECM) composition, which is critical in regulating cell behavior. However, their interacting roles in TNBC patients remains to be characterized. Main methods: Dormant cancer cells in MDA-MB-231 cell line with highest PKH26 dye-retaining were FACS-sorted and gene expression was then analyzed. Dormant associated ECM (DA-ECM) signature was characterized by pathway analysis. Unsupervised hierarchical clustering was used to define distinct ECM features for TNBC patients. ECM-specific tumor biology was defined by integration of bulk RNA-seq with single-cell RNA-seq data, analysis of ligand-receptor interactions and enriched biological pathways, and in silico drug screening. We validated the sensitivity of dormant cancer cells to MAPK inhibitors by flow cytometry in vitro. Key findings: We observed that dormant TNBC cells preferentially expressed ∼10 % DA-ECM genes. The DA-ECM High subtype defined by unsupervised hierarchical clustering analysis was associated with immunosuppressive tumor microenvironment. Moreover, ligand-receptor interaction and pathway analysis revealed that the DA-ECM High subtype may likely help maintain tumor cell dormancy through MAPK, Hedgehog and Notch signaling pathways. Finally, in silico drug screening against the DA-ECM signature and in vitro assay showed dormant cancer cells were relatively sensitive to the MAPK pathway inhibitors, which may represent a potential therapeutic strategy for treating TNBC. Significance: Collectively, our research revealed that dormancy-associated ECM characterized tumor cells possess significant ECM remodeling capacity, and treatment strategies towards these cells could improve TNBC patient outcome.

16.
Sensors (Basel) ; 24(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931492

ABSTRACT

A staggered vane-shaped slot-line slow-wave structure (SV-SL SWS) for application in W-band traveling wave tubes (TWTs) is proposed in this article. In contrast to the conventional slot-line SWSs with dielectric substrates, the proposed SWS consists only of a thin metal sheet inscribed with periodic grooves and two half-metal enclosures, which means it can be easily manufactured and assembled and has the potential for mass production. This SWS not only solves the problem of the dielectric loading effect but also improves the heat dissipation capability of such structures. Meanwhile, the SWS design presented here covers a -15 dB S11 frequency range from 87.5 to 95 GHz. The 3-D simulation for a TWT based on the suggested SWS is also investigated. Under dual-electron injection conditions with a total voltage of 17.2 kV and a total current of 0.3 A, the maximum output power at 90 GHz is 200 W, with a 3 dB bandwidth up to 4 GHz. With a good potential for fabrication using microfabrication techniques, this structure can be a good candidate for millimeter-wave TWT applications.

17.
J Biol Chem ; 300(6): 107382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763337

ABSTRACT

ASCT2 (alanine serine cysteine transporter 2), a member of the solute carrier 1 family, mediates Na+-dependent exchange of small neutral amino acids across cell membranes. ASCT2 was shown to be highly expressed in tumor cells, making it a promising target for anticancer therapies. In this study, we explored the binding mechanism of the high-affinity competitive inhibitor L-cis hydroxyproline biphenyl ester (Lc-BPE) with ASCT2, using electrophysiological and rapid kinetic methods. Our investigations reveal that Lc-BPE binding requires one or two Na+ ions initially bound to the apo-transporter with high affinity, with Na1 site occupancy being more critical for inhibitor binding. In contrast to the amino acid substrate bound form, the final, third Na+ ion cannot bind, due to distortion of its binding site (Na2), thus preventing the formation of a translocation-competent complex. Based on the rapid kinetic analysis, the application of Lc-BPE generated outward transient currents, indicating that despite its net neutral nature, the binding of Lc-BPE in ASCT2 is weakly electrogenic, most likely because of asymmetric charge distribution within the amino acid moiety of the inhibitor. The preincubation with Lc-BPE also led to a decrease of the turnover rate of substrate exchange and a delay in the activation of substrate-induced anion current, indicating relatively slow Lc-BPE dissociation kinetics. Overall, our results provide new insight into the mechanism of binding of a prototypical competitive inhibitor to the ASCT transporters.


Subject(s)
Amino Acid Transport System ASC , Minor Histocompatibility Antigens , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/antagonists & inhibitors , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/chemistry , Kinetics , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/chemistry , Humans , Sodium/metabolism , Sodium/chemistry , Animals , Binding, Competitive
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124499, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38788505

ABSTRACT

As a new type of persistent pollutant, microplastics pose a serious threat to the earth's ecological environment and human health. Efficient and reliable microplastic detection technology is of great significance in the management of microplastic pollution. Aiming at the problems of low signal-to-noise ratio (SNR), narrow spectral range and low spectral resolution in traditional microplastic detection technology, a splicing grating spatial heterodyne Raman spectroscopy (SG-SHRS) is proposed in this paper. The splicing grating is composed of four sub-gratings with groove densities of 320, 298, 276 and 254 gr / mm, respectively. Each sub-grating has an independent sub-filter to improve the SNR of the system. The system is simulated, built and calibrated. The actual resolution of the SG-SHRS system is 0.7 cm-1, and the spectral detection range of a single sub-grating is 2947.2 cm-1. Four kinds of microplastics, polyamide (PA), polystyrene (PS), polycarbonate (PC), and polyphenylene sulfide (PPS), were detected by the SG-SHRS system. The complete Raman spectral information of microplastics was obtained, and the peak assignment of Raman characteristic peaks of the four kinds of microplastics was analyzed. By comparing the test results with a commercial dispersion spectrometer, it has been proven that the SG-SHRS system has the advantages of high spectral resolution, wide spectral range, and high SNR, and has good application prospects in the field of microplastic detection.

19.
Ecotoxicol Environ Saf ; 279: 116467, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38761497

ABSTRACT

BACKGROUND: Although the changes of mitogen-activated protein kinase (MAPK) pathway in the central nervous system (CNS) induced by excessive fluoride has been confirmed by our previous findings, the underlying mechanism(s) of the action remains unclear. Here, we investigate the possibility that microRNAs (miRNAs) are involved in the aspect. METHODS: As a model of chronic fluorosis, SD rats received different concentrations of fluoride in their drinking water for 3 or 6 months and SH-SY5Y cells were exposed to fluoride. Literature reviews and bioinformatics analyses were used to predict and real-time PCR to measure the expression of 12 miRNAs; an algorithm-based approach was applied to identify multiply potential target-genes and pathways; the dual-luciferase reporter system to detect the association of miR-132-3p with MAPK1; and fluorescence in situ hybridization to detect miR-132-3p localization. The miR-132-3p inhibitor or mimics or MAPK1 silencing RNA were transfected into cultured cells. Expression of protein components of the MAPK pathway was assessed by immunofluorescence or Western blotting. RESULTS: In the rat hippocampus exposed with high fluoride, ten miRNAs were down-regulated and two up-regulated. Among these, miR-132-3p expression was down-regulated to the greatest extent and MAPK1 level (selected from the 220 genes predicted) was corelated with the alteration of miR-132-3p. Furthermore, miR-132-3p level was declined, whereas the protein levels MAPK pathway components were increased in the rat brains and SH-SY5Y cells exposed to high fluoride. MiR-132-3p up-regulated MAPK1 by binding directly to its 3'-untranslated region. Obviously, miR-132-3p mimics or MAPK1 silencing RNA attenuated the elevated expressions of the proteins components of the MAPK pathway induced by fluorosis in SH-SY5Y cells, whereas an inhibitor of miR-132-3p just played the opposite effect. CONCLUSION: MiR-132-3p appears to modulate the changes of MAPK signaling pathway in the CNS associated with chronic fluorosis.


Subject(s)
Fluorides , MicroRNAs , Mitogen-Activated Protein Kinase 1 , Rats, Sprague-Dawley , MicroRNAs/genetics , Animals , Rats , Fluorides/toxicity , Humans , Mitogen-Activated Protein Kinase 1/metabolism , MAP Kinase Signaling System/drug effects , Brain/drug effects , Brain/metabolism , Male , Cell Line, Tumor
20.
Cancer Sci ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720175

ABSTRACT

Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.

SELECTION OF CITATIONS
SEARCH DETAIL
...