Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2400302, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634222

ABSTRACT

Tin-lead (Sn-Pb) perovskite solar cells (PSCs) have gained interest as candidates for the bottom cell of all-perovskite tandem solar cells due to their broad absorption of the solar spectrum. A notable challenge arises from the prevalent use of the hole transport layer, PEDOT:PSS, known for its inherently high doping level. This high doping level can lead to interfacial recombination, imposing a significant limitation on efficiency. Herein, NaOH is used to dedope PEDOT:PSS, with the aim of enhancing the efficiency of Sn-Pb PSCs. Secondary ion mass spectrometer profiles indicate that sodium ions diffuse into the perovskite layer, improving its crystallinity and enlarging its grains. Comprehensive evaluations, including photoluminescence and nanosecond transient absorption spectroscopy, confirm that dedoping significantly reduces interfacial recombination, resulting in an open-circuit voltage as high as 0.90 V. Additionally, dedoping PEDOT:PSS leads to increased shunt resistance and high fill factor up to 0.81. As a result of these improvements, the power conversion efficiency is enhanced from 19.7% to 22.6%. Utilizing NaOH to dedope PEDOT:PSS also transitions its nature from acidic to basic, enhancing stability and exhibiting less than a 7% power conversion efficiency loss after 1176 h of storage in N2 atmosphere.

2.
Angew Chem Int Ed Engl ; 63(21): e202318663, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38516922

ABSTRACT

Graphite has been serving as the key anode material of rechargeable Li-ion batteries, yet is difficultly charged within a quarter hour while maintaining stable electrochemistry. In addition to a defective edge structure that prevents fast Li-ion entry, the high-rate performance of graphite could be hampered by co-intercalation and parasitic reduction of solvent molecules at anode/electrolyte interface. Conventional surface modification by pitch-derived carbon barely isolates the solvent and electrons, and usually lead to inadequate rate capability to meet practical fast-charge requirements. Here we show that, by applying a MoOx-MoNx layer onto graphite surface, the interface allows fast Li-ion diffusion yet blocks solvent access and electron leakage. By regulating interfacial mass and charge transfer, the modified graphite anode delivers a reversible capacity of 340.3 mAh g-1 after 4000 cycles at 6 C, showing promises in building 10-min-rechargeable batteries with a long operation life.

3.
Nat Commun ; 13(1): 6884, 2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36371429

ABSTRACT

2D material hydrogels have recently sparked tremendous interest owing to their potential in diverse applications. However, research on the emerging 2D MXene hydrogels is still in its infancy. Herein, we show a universal 4D printing technology for manufacturing MXene hydrogels with customizable geometries, which suits a family of MXenes such as Nb2CTx, Ti3C2Tx, and Mo2Ti2C3Tx. The obtained MXene hydrogels offer 3D porous architectures, large specific surface areas, high electrical conductivities, and satisfying mechanical properties. Consequently, ultrahigh capacitance (3.32 F cm-2 (10 mV s-1) and 233 F g-1 (10 V s-1)) and mass loading/thickness-independent rate capabilities are achieved. The further 4D-printed Ti3C2Tx hydrogel micro-supercapacitors showcase great low-temperature tolerance (down to -20 °C) and deliver high energy and power densities up to 93 µWh cm-2 and 7 mW cm-2, respectively, surpassing most state-of-the-art devices. This work brings new insights into MXene hydrogel manufacturing and expands the range of their potential applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...