Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nature ; 614(7947): 334-342, 2023 02.
Article in English | MEDLINE | ID: mdl-36697826

ABSTRACT

The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.


Subject(s)
CD8-Positive T-Lymphocytes , Immune Tolerance , Lipopolysaccharide Receptors , Lipopolysaccharides , Liver , Myeloid Cells , Humans , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immune Tolerance/drug effects , Immune Tolerance/immunology , Liver/drug effects , Liver/immunology , Liver/pathology , Liver/virology , Interleukin-2/biosynthesis , Interleukin-2/immunology , Chemotaxis, Leukocyte , Bacteria/immunology , Intestines/immunology , Intestines/microbiology
2.
NPJ Vaccines ; 6(1): 7, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33420102

ABSTRACT

HCV vaccine development is stymied by the high genetic diversity of the virus and the variability of the envelope glycoproteins. One strategy to overcome this is to identify conserved, functionally important regions-such as the epitopes of broadly neutralizing antibodies (bNAbs)-and use these as a basis for structure-based vaccine design. Here, we report an anti-idiotype approach that has generated an antibody that mimics a highly conserved neutralizing epitope on HCV E2. Crucially, a mutagenesis screen was used to identify the antibody, designated B2.1 A, whose binding characteristics to the bNAb AP33 closely resemble those of the original antigen. Protein crystallography confirmed that B2.1 A is a structural mimic of the AP33 epitope. When used as an immunogen B2.1 A induced antibodies that recognized the same epitope and E2 residues as AP33 and most importantly protected against HCV challenge in a mouse model.

4.
Sci Rep ; 10(1): 14101, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839523

ABSTRACT

Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC) worldwide. The prolyl hydroxylase domain (PHD)-hypoxia inducible factor (HIF) pathway is a key mammalian oxygen sensing pathway and is frequently perturbed by pathological states including infection and inflammation. We discovered a significant upregulation of hypoxia regulated gene transcripts in patients with chronic hepatitis B (CHB) in the absence of liver cirrhosis. We used state-of-the-art in vitro and in vivo HBV infection models to evaluate a role for HBV infection and the viral regulatory protein HBx to drive HIF-signalling. HBx had no significant impact on HIF expression or associated transcriptional activity under normoxic or hypoxic conditions. Furthermore, we found no evidence of hypoxia gene expression in HBV de novo infection, HBV infected human liver chimeric mice or transgenic mice with integrated HBV genome. Collectively, our data show clear evidence of hypoxia gene induction in CHB that is not recapitulated in existing models for acute HBV infection, suggesting a role for inflammatory mediators in promoting hypoxia gene expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Hypoxia/genetics , Hepatitis B, Chronic/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Hypoxia/physiology , Cell Line, Tumor , Disease Models, Animal , Female , Hep G2 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidative Stress/physiology , Oxygen/metabolism
6.
Philos Trans R Soc Lond B Biol Sci ; 374(1773): 20180292, 2019 05 27.
Article in English | MEDLINE | ID: mdl-30955495

ABSTRACT

Hepatitis B virus (HBV) entry into hepatocytes is mediated via a high-affinity interaction between the preS1 glycoprotein and sodium/bile acid cotransporting polypeptide (NTCP). To date, in vitro model systems rely on high multiplicities of infection to achieve infection of cell lines overexpressing human NTCP. This study investigates a novel regulatory pathway for NTCP trafficking to the cell surface, induced by DMSO-mediated cellular differentiation. DMSO rapidly induces high cell surface expression of NTCP and results in increased susceptibility of cells to HBV infection. Additionally, DMSO treatment induces actin, as well as Tubulin reshaping within the cells. We show that direct disruption of the actin and Tubulin network directly enhances NTCP expression and the subsequent susceptibility of cells to HBV infection. DMSO induces these changes via alterations in the levels of cyclic (c)AMP, which participates in the observed actin rearrangements. Blocking of phosphodiesterases (PDEs), which degrade accumulated cAMP, had the same effect as DMSO differentiation and demonstrates that DMSO prevents phosphodiesterase-mediated cAMP degradation. This identifies adenylate cyclase as a novel target for blocking the entry of HBV via targeting the cell surface accumulation of NTCP. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.


Subject(s)
Cyclic AMP/metabolism , Dimethyl Sulfoxide/pharmacology , Hepatitis B virus/physiology , Hepatitis B/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Phosphoric Diester Hydrolases/metabolism , Symporters/genetics , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism
7.
J Virol ; 93(11)2019 06 01.
Article in English | MEDLINE | ID: mdl-30867315

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) infection is associated with aberrant immune activation; however, most model systems for HIV-1 have been used during established infection. Here, we utilize ultrasensitive HIV-1 quantification to delineate early events during the eclipse, burst, and chronic phases of HIV-1 infection in humanized mice. We show that very early in infection, HIV-1 suppresses peripheral type I interferon (IFN) and interferon-stimulated gene (ISG) responses, including the HIV-1 restriction factor IFI44. At the peak of innate immune activation, prior to CD4 T cell loss, HIV-1 infection differentially affects peripheral and lymphoid Toll-like receptor (TLR) expression profiles in T cells and macrophages. This results in a trend toward an altered activation of nuclear factor κB (NF-κB), TANK-binding kinase 1 (TBK1), and interferon regulatory factor 3 (IRF3). The subsequent type I and III IFN responses result in preferential induction of peripheral ISG responses. Following this initial innate immune activation, peripheral expression of the HIV-1 restriction factor SAM domain- and HD domain-containing protein 1 (SAMHD1) returns to levels below those observed in uninfected mice, suggesting that HIV-1 interferes with their basal expression. However, peripheral cells still retain their responsiveness to exogenous type I IFN, whereas splenic cells show a reduction in select ISGs in response to IFN. This demonstrates the highly dynamic nature of very early HIV-1 infection and suggests that blocks to the induction of HIV-1 restriction factors contribute to the establishment of viral persistence.IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) infection is restricted to humans and some nonhuman primates (e.g., chimpanzee and gorilla). Alternative model systems based on simian immunodeficiency virus (SIV) infection of macaques are available but do not recapitulate all aspects of HIV-1 infection and disease. Humanized mice, which contain a human immune system, can be used to study HIV-1, but only limited information on early events and immune responses is available to date. Here, we describe very early immune responses to HIV-1 and demonstrate a suppression of cell-intrinsic innate immunity. Furthermore, we show that HIV-1 infection interacts differently with innate immune responses in blood and lymphoid organs.


Subject(s)
HIV Infections/immunology , HIV Infections/metabolism , Immunity, Innate/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , HEK293 Cells , HIV-1/immunology , HIV-1/metabolism , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/immunology , Interferon Type I/metabolism , Kinetics , Macrophages/virology , Mice , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism
8.
J Vis Exp ; (144)2019 02 19.
Article in English | MEDLINE | ID: mdl-30855577

ABSTRACT

Despite the exceptional infectivity of the hepatitis B virus (HBV) in vivo, where only three viral genomes can result in a chronicity of experimentally infected chimpanzees, most in vitro models require several hundreds to thousands of viral genomes per cell in order to initiate a transient infection. Additionally, static 2D cultures of primary human hepatocytes (PHH) allow only short-term studies due to their rapid dedifferentiation. Here, we describe 3D liver-on-a-chip cultures of PHH, either in monocultures or in cocultures with other nonparenchymal liver-resident cells. These offer a significant improvement to studying long-term HBV infections with physiological host cell responses. In addition to facilitating drug efficacy studies, toxicological analysis, and investigations into pathogenesis, these microfluidic culture systems enable the evaluation of curative therapies for HBV infection aimed at eliminating covalently closed, circular (ccc)DNA. This presented method describes the set-up of PHH monocultures and PHH/Kupffer cell co-cultures, their infection with purified HBV, and the analysis of host responses. This method is particularly applicable to the evaluation of long-term effects of HBV infection, treatment combinations, and pathogenesis.


Subject(s)
Hepatitis B virus/physiology , Hepatitis B/physiopathology , Hepatocytes/metabolism , Kupffer Cells/metabolism , Liver/pathology , Humans
9.
Viruses ; 11(2)2019 02 20.
Article in English | MEDLINE | ID: mdl-30791609

ABSTRACT

Viruses are a major threat to human health and economic well-being. In recent years Ebola, Zika, influenza, and chikungunya virus epidemics have raised awareness that infections can spread rapidly before vaccines or specific antagonists can be made available. Broad-spectrum antivirals are drugs with the potential to inhibit infection by viruses from different groups or families, which may be deployed during outbreaks when specific diagnostics, vaccines or directly acting antivirals are not available. While pathogen-directed approaches are generally effective against a few closely related viruses, targeting cellular pathways used by multiple viral agents can have broad-spectrum efficacy. Virus entry, particularly clathrin-mediated endocytosis, constitutes an attractive target as it is used by many viruses. Using a phenotypic screening strategy where the inhibitory activity of small molecules was sequentially tested against different viruses, we identified 12 compounds with broad-spectrum activity, and found a subset blocking viral internalisation and/or fusion. Importantly, we show that compounds identified with this approach can reduce viral replication in a mouse model of Zika infection. This work provides proof of concept that it is possible to identify broad-spectrum inhibitors by iterative phenotypic screenings, and that inhibition of host-pathways critical for viral life cycles can be an effective antiviral strategy.


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Host-Pathogen Interactions/drug effects , Small Molecule Libraries , Virus Internalization/drug effects , Viruses/drug effects , Animals , HeLa Cells , Humans , Inhibitory Concentration 50 , Mice , RNA, Viral/genetics , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus Infection/drug therapy
10.
ACS Infect Dis ; 5(5): 688-702, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30539633

ABSTRACT

Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.


Subject(s)
Disease Models, Animal , Hepatitis B virus/pathogenicity , Hepatitis B/virology , Animals , Hepatitis B/immunology , Hepatitis B virus/immunology , Humans , Mice
11.
Immunology ; 154(1): 50-61, 2018 05.
Article in English | MEDLINE | ID: mdl-29446074

ABSTRACT

Humanized mice are increasingly appreciated as an incredibly powerful platform for infectious disease research. The often very narrow species tropism of many viral infections, coupled with the sometimes misleading results from preclinical studies in animal models further emphasize the need for more predictive model systems based on human cells rather than surrogates. Humanized mice represent such a model and have been greatly enhanced with regards to their immune system reconstitution as well as immune functionality in the past years, resulting in their recommendation as a preclinical model by the US Food and Drug Administration. This review aims to give a detailed summary of the generation of human peripheral blood lymphocyte-, CD34+ haematopoietic stem cell- and bone marrow/liver/thymus-reconstituted mice and available improved models (e.g. myeloid- or T-cell-only mice, MISTRG, NSG-SGM3). Additionally, we summarize human-tropic viral infections, for which humanized mice offer a novel approach for the study of disease pathogenesis as well as future perspectives for their use in biomedical, drug and vaccine research.


Subject(s)
Virus Diseases/virology , Viruses/pathogenicity , Adaptive Immunity , Animals , Bone Marrow Transplantation , Disease Models, Animal , Genetic Predisposition to Disease , Hematopoietic Stem Cell Transplantation , Host-Pathogen Interactions , Humans , Immunity, Humoral , Immunity, Innate , Mice, Transgenic , Phenotype , Transplantation, Heterologous , Virus Diseases/genetics , Virus Diseases/immunology , Viruses/immunology
12.
Mol Ther ; 26(2): 329-330, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29396263
13.
Vaccines (Basel) ; 5(3)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28862649

ABSTRACT

Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.

14.
Article in English | MEDLINE | ID: mdl-28193659

ABSTRACT

A hepatitis C virus (HCV) epidemic affecting HIV-infected men who have sex with men (MSM) is expanding worldwide. In spite of the improved cure rates obtained with the new direct-acting antiviral drug (DAA) combinations, the high rate of reinfection within this population calls urgently for novel preventive interventions. In this study, we determined in cell culture and ex vivo experiments with human colorectal tissue that lipoquads, G-quadruplex DNA structures fused to cholesterol, are efficient HCV pangenotypic entry and cell-to-cell transmission inhibitors. Thus, lipoquads may be promising candidates for the development of rectally applied gels to prevent HCV transmission.


Subject(s)
Antiviral Agents/therapeutic use , Cholesterol/therapeutic use , Hepacivirus/drug effects , Hepatitis C/drug therapy , Hepatitis C/transmission , Oligonucleotides/therapeutic use , Virus Internalization/drug effects , Cell Line, Tumor , Cholesterol/chemistry , G-Quadruplexes , HEK293 Cells , HIV Infections , Hepacivirus/growth & development , Homosexuality, Male , Humans , Male , Oligonucleotides/chemistry
15.
mBio ; 7(6)2016 11 08.
Article in English | MEDLINE | ID: mdl-27834208

ABSTRACT

Hepatitis C virus (HCV) species tropism is incompletely understood. We have previously shown that at the level of entry, human CD81 and occludin (OCLN) comprise the minimal set of human factors needed for viral uptake into murine cells. As an alternative approach to genetic humanization, species barriers can be overcome by adapting HCV to use the murine orthologues of these entry factors. We previously generated a murine tropic HCV (mtHCV or Jc1/mCD81) strain harboring three mutations within the viral envelope proteins that allowed productive entry into mouse cell lines. In this study, we aimed to characterize the ability of mtHCV to enter and infect mouse hepatocytes in vivo and in vitro Using a highly sensitive, Cre-activatable reporter, we demonstrate that mtHCV can enter mouse hepatocytes in vivo in the absence of any human cofactors. Viral entry still relied on expression of mouse CD81 and SCARB1 and was more efficient when mouse CD81 and OCLN were overexpressed. HCV entry could be significantly reduced in the presence of anti-HCV E2 specific antibodies, suggesting that uptake of mtHCV is dependent on viral glycoproteins. Despite mtHCV's ability to enter murine hepatocytes in vivo, we did not observe persistent infection, even in animals with severely blunted type I and III interferon signaling and impaired adaptive immune responses. Altogether, these results establish proof of concept that the barriers limiting HCV species tropism can be overcome by viral adaptation. However, additional viral adaptations will likely be needed to increase the robustness of a murine model system for hepatitis C. IMPORTANCE: At least 150 million individuals are chronically infected with HCV and are at risk of developing serious liver disease. Despite the advent of effective antiviral therapy, the frequency of chronic carriers has only marginally decreased. A major roadblock in developing a vaccine that would prevent transmission is the scarcity of animal models that are susceptible to HCV infection. It is poorly understood why HCV infects only humans and chimpanzees. To develop an animal model for hepatitis C, previous efforts focused on modifying the host environment of mice, for example, to render them more susceptible to HCV infection. Here, we attempted a complementary approach in which a laboratory-derived HCV variant was tested for its ability to infect mice. We demonstrate that this engineered HCV strain can enter mouse liver cells but does not replicate efficiently. Thus, additional adaptations are likely needed to construct a robust animal model for HCV.


Subject(s)
Adaptation, Physiological , Hepacivirus/physiology , Hepatitis C/virology , Virus Internalization , Adaptive Immunity , Animals , Antibodies, Viral/immunology , Cell Line , Disease Models, Animal , Hepacivirus/genetics , Hepacivirus/immunology , Hepatitis C/immunology , Hepatocytes/immunology , Hepatocytes/virology , Host Specificity , Humans , Mice , Occludin/genetics , Scavenger Receptors, Class B/genetics , Tetraspanin 28/genetics , Viral Tropism
16.
mSystems ; 1(3)2016.
Article in English | MEDLINE | ID: mdl-27822537

ABSTRACT

Greater understanding of the functions of host gene products in response to infection is required. While many of these genes enable pathogen clearance, some enhance pathogen growth or contribute to disease symptoms. Many studies have profiled transcriptomic and proteomic responses to infection, generating large data sets, but selecting targets for further study is challenging. Here we propose a novel data-mining approach combining multiple heterogeneous data sets to prioritize genes for further study by using respiratory syncytial virus (RSV) infection as a model pathogen with a significant health care impact. The assumption was that the more frequently a gene is detected across multiple studies, the more important its role is. A literature search was performed to find data sets of genes and proteins that change after RSV infection. The data sets were standardized, collated into a single database, and then panned to determine which genes occurred in multiple data sets, generating a candidate gene list. This candidate gene list was validated by using both a clinical cohort and in vitro screening. We identified several genes that were frequently expressed following RSV infection with no assigned function in RSV control, including IFI27, IFIT3, IFI44L, GBP1, OAS3, IFI44, and IRF7. Drilling down into the function of these genes, we demonstrate a role in disease for the gene for interferon regulatory factor 7, which was highly ranked on the list, but not for IRF1, which was not. Thus, we have developed and validated an approach for collating published data sets into a manageable list of candidates, identifying novel targets for future analysis. IMPORTANCE Making the most of "big data" is one of the core challenges of current biology. There is a large array of heterogeneous data sets of host gene responses to infection, but these data sets do not inform us about gene function and require specialized skill sets and training for their utilization. Here we describe an approach that combines and simplifies these data sets, distilling this information into a single list of genes commonly upregulated in response to infection with RSV as a model pathogen. Many of the genes on the list have unknown functions in RSV disease. We validated the gene list with new clinical, in vitro, and in vivo data. This approach allows the rapid selection of genes of interest for further, more-detailed studies, thus reducing time and costs. Furthermore, the approach is simple to use and widely applicable to a range of diseases.

17.
J Hepatol ; 65(2): 334-43, 2016 08.
Article in English | MEDLINE | ID: mdl-27151182

ABSTRACT

BACKGROUND & AIMS: Human liver chimeric mice are useful models of human hepatitis virus infection, including hepatitis B and C virus infections. Independently, immunodeficient mice reconstituted with CD34(+) hematopoietic stem cells (HSC) derived from fetal liver reliably develop human T and B lymphocytes. Combining these systems has long been hampered by inefficient liver reconstitution of human fetal hepatoblasts. Our study aimed to enhance hepatoblast engraftment in order to create a mouse model with syngeneic human liver and immune cells. METHODS: The effects of human oncostatin-M administration on fetal hepatoblast engraftment into immunodeficient fah(-/-) mice was tested. Mice were then transplanted with syngeneic human hepatoblasts and HSC after which human leukocyte chimerism and functionality were analyzed by flow cytometry, and mice were challenged with HBV. RESULTS: Addition of human oncostatin-M enhanced human hepatoblast engraftment in immunodeficient fah(-/-) mice by 5-100 fold. In contrast to mice singly engrafted with HSC, which predominantly developed human T and B lymphocytes, mice co-transplanted with syngeneic hepatoblasts also contained physiological levels of human monocytes and natural killer cells. Upon infection with HBV, these mice displayed rapid and sustained viremia. CONCLUSIONS: Our study provides a new mouse model with improved human fetal hepatoblast engraftment and an expanded human immune cell repertoire. With further improvements, this model may become useful for studying human immunity against viral hepatitis. LAY SUMMARY: Important human pathogens such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus only infect human cells which complicates the development of mouse models for the study of these pathogens. One way to make mice permissive for human pathogens is the transplantation of human cells into immune-compromised mice. For instance, the transplantation of human liver cells will allow the infection of these so-called "liver chimeric mice" with hepatitis B virus and hepatitis C virus. The co-transplantation of human immune cells into liver chimeric mice will further allow the study of human immune responses to hepatitis B virus or hepatitis C virus. However, for immunological studies it will be crucial that the transplanted human liver and immune cells are derived from the same human donor. In our study we describe the efficient engraftment of human fetal liver cells and immune cells derived from the same donor into mice. We show that liver co-engraftment resulted in an expanded human immune cell repertoire, including monocytes and natural killer cells in the liver. We further demonstrate that these mice could be infected with hepatitis B virus, which lead to an expansion of natural killer cells. In conclusion we have developed a new mouse model that could be useful to study human immune responses to human liver pathogens.


Subject(s)
Killer Cells, Natural , Monocytes , Animals , Hepatitis B , Hepatocytes , Humans , Mice , Mice, SCID
18.
Proc Natl Acad Sci U S A ; 113(9): 2484-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26884193

ABSTRACT

Hepatitis C virus (HCV) is a unique enveloped virus that assembles as a hybrid lipoviral particle by tightly interacting with host lipoproteins. As a result, HCV virions display a characteristic low buoyant density and a deceiving coat, with host-derived apolipoproteins masking viral epitopes. We previously described methods to produce high-titer preparations of HCV particles with tagged envelope glycoproteins that enabled ultrastructural analysis of affinity-purified virions. Here, we performed proteomics studies of HCV isolated from culture media of infected hepatoma cells to define viral and host-encoded proteins associated with mature virions. Using two different affinity purification protocols, we detected four viral and 46 human cellular proteins specifically copurifying with extracellular HCV virions. We determined the C terminus of the mature capsid protein and reproducibly detected low levels of the viral nonstructural protein, NS3. Functional characterization of virion-associated host factors by RNAi identified cellular proteins with either proviral or antiviral roles. In particular, we discovered a novel interaction between HCV capsid protein and the nucleoporin Nup98 at cytosolic lipid droplets that is important for HCV propagation. These results provide the first comprehensive view to our knowledge of the protein composition of HCV and new insights into the complex virus-host interactions underlying HCV infection.


Subject(s)
Hepacivirus/physiology , Nuclear Pore Complex Proteins/physiology , Proteomics , Viral Proteins/metabolism , Virion/metabolism , Amino Acid Sequence , Cell Line , Hepacivirus/metabolism , Humans , Mass Spectrometry , Molecular Sequence Data , Morphogenesis , Viral Proteins/chemistry
19.
Virology ; 479-480: 221-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25847726

ABSTRACT

Hepatitis C virus (HCV) represents a global health concern affecting over 185 million people worldwide. Chronic HCV infection causes liver fibrosis and cirrhosis and is the leading indication for liver transplantation. Recent advances in the field of direct-acting antiviral drugs (DAAs) promise a cure for HCV in over 90% of cases that will get access to these expensive treatments. Nevertheless, the lack of a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. With chimpanzees being for a long time the only non-human in vivo model of HCV infection, strong efforts were put into establishing in vitro experimental systems. The initial models only enabled to study specific aspects of the HCV life cycle, such as viral replication with the subgenomic replicon and entry using HCV pseudotyped particles (HCVpp). Subsequent development of protocols to grow infectious HCV particles in cell-culture (HCVcc) ignited investigations on the full cycle of HCV infection and the virus-host interactions required for virus propagation. More recently, small animal models permissive to HCV were generated that allowed in vivo testing of novel antiviral therapies as well as vaccine candidates. This review provides an overview of the currently available in vitro and in vivo experimental systems to study HCV biology. Particular emphasis is given to how these model systems furthered our understanding of virus-host interactions, viral pathogenesis and immunological responses to HCV infection, as well as drug and vaccine development.


Subject(s)
Disease Models, Animal , Hepacivirus/physiology , Host-Pathogen Interactions , Animals , Cell Line , Hepacivirus/pathogenicity , Humans , Pan troglodytes
20.
Sci Transl Med ; 6(254): 254ra129, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25232181

ABSTRACT

In most exposed individuals, hepatitis C virus (HCV) establishes a chronic infection; this long-term infection in turn contributes to the development of liver diseases such as cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. We demonstrate that three broadly nAbs-AR3A, AR3B, and AR4A-delivered with adeno-associated viral vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a therapeutic approach to interfere with HCV infection by exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes to sustain a chronic infection.


Subject(s)
Antibodies, Neutralizing/immunology , Hepatitis C, Chronic/immunology , Animals , Antibodies, Neutralizing/therapeutic use , Cells, Cultured , Dependovirus/genetics , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/therapy , Hepatocytes/virology , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL