Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Phytopathology ; 114(8): 1822-1831, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38700938

ABSTRACT

Plant-pathogenic fungi produce toxins as virulence factors in many plant diseases. In Cercospora leaf blight of soybean caused by Cercospora cf. flagellaris, symptoms are a consequence of the production of a perylenequinone toxin, cercosporin, which is light-activated to produce damaging reactive oxygen species. Cercosporin is universally toxic to cells, except to the cells of the producer. The current model of self-resistance to cercosporin is largely attributed to the maintenance of cercosporin in a chemically reduced state inside hyphae, unassociated with cellular organelles. However, in another perylenequinone-producing fungus, Phaeosphaeria sp., the toxin was specifically sequestered inside lipid droplets (LDs) to prevent reactive oxygen species production. This study hypothesized that LD-based sequestration of cercosporin occurred in C. cf. flagellaris and that lipid-inhibiting fungicides could inhibit toxin production. Confocal microscopy using light-cultured C. cf. flagellaris indicated that 3-day-old hyphae contained two forms of cercosporin distributed in two types of hyphae. Reduced cercosporin was uniformly distributed in the cytoplasm of thick, primary hyphae, and, contrary to previous studies, active cercosporin was observed specifically in the LDs of thin, secondary hyphae. The production of hyphae of two different thicknesses, a characteristic of hemibiotrophic plant pathogens, has not been documented in C. cf. flagellaris. No correlation was observed between cercosporin production and total lipid extracted, and two lipid-inhibiting fungicides had little effect on fungal growth in growth-inhibition assays. This study lays a foundation for exploring the importance of pathogen lifestyle, toxin production, and LD content in the pathogenicity and symptomology of Cercospora.


Subject(s)
Cercospora , Hyphae , Perylene , Plant Diseases , Perylene/analogs & derivatives , Perylene/metabolism , Plant Diseases/microbiology , Hyphae/drug effects , Hyphae/growth & development , Cercospora/metabolism , Glycine max/microbiology , Ascomycota/drug effects , Ascomycota/physiology , Ascomycota/growth & development , Ascomycota/metabolism , Reactive Oxygen Species/metabolism , Fungicides, Industrial/pharmacology , Lipid Droplets/metabolism , Plant Leaves/microbiology , Microscopy, Confocal
2.
Phytopathology ; 114(5): 1039-1049, 2024 May.
Article in English | MEDLINE | ID: mdl-38514043

ABSTRACT

Aerial blight, caused by the fungus Rhizoctonia solani anastomosis group (AG) 1-IA, is an economically important soybean disease in the mid-Southern United States. Management has relied on fungicide applications during the season, but there is an increasing prevalence of resistance to commonly used strobilurin fungicides and an urgent need to identify soybean varieties resistant to aerial blight. Because the patchy distribution of the pathogen complicates field variety screening, the present study aimed to develop a greenhouse screening protocol to identify soybean varieties resistant to aerial blight. For this, 88 pathogen isolates were collected from commercial fields and research farms across five Louisiana parishes, and 77% were confirmed to be R. solani AG1-IA. Three polymorphic codominant microsatellite markers were used to explore the genetic diversity of 43 R. solani AG1-IA isolates, which showed high genetic diversity, with 35 haplotypes in total and only two haplotypes common to two other locations. Six genetically diverse isolates were chosen and characterized for their virulence and fungicide sensitivity. The isolate AC2 was identified as the most virulent and was resistant to both active ingredients, azoxystrobin and pyraclostrobin, tested. The six isolates were used in greenhouse variety screening trials using a millet inoculation protocol. Of the 31 varieties screened, only Armor 48-D25 was classified as moderately resistant, and plant height to the first node influenced final disease severity. The study provides short-term solutions for growers to choose less susceptible varieties for planting and lays the foundation to characterize host resistance against this important soybean pathogen.


Subject(s)
Fungicides, Industrial , Glycine max , Plant Diseases , Rhizoctonia , Rhizoctonia/physiology , Rhizoctonia/genetics , Rhizoctonia/drug effects , Rhizoctonia/pathogenicity , Plant Diseases/microbiology , Glycine max/microbiology , Fungicides, Industrial/pharmacology , Disease Resistance/genetics , Strobilurins/pharmacology , Methacrylates/pharmacology , Genetic Variation , Microsatellite Repeats/genetics , Pyrazoles/pharmacology , Virulence/genetics , Louisiana , Pyrimidines
3.
Plant Dis ; 108(1): 149-161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37578368

ABSTRACT

Cercospora leaf blight (CLB) of soybean, caused by Cercospora cf. flagellaris, C. kikuchii, and C. cf. sigesbeckiae, is an economically important disease in the southern United States. Cultivar resistance to CLB is inconsistent; therefore, fungicides in the quinone outside inhibitor (QoI) class have been relied on to manage the disease. Approximately 620 isolates from plants exhibiting CLB were collected between 2018 and 2021 from 19 locations in eight southern states. A novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on two genes, calmodulin and histone h3, was developed to differentiate between the dominant species of Cercospora, C. cf. flagellaris, and C. cf. sigesbeckiae. A multilocus phylogenetic analysis of actin, calmodulin, histone h3, ITS rDNA, and transcription elongation factor 1-α was used to confirm PCR-RFLP results and identify remaining isolates. Approximately 80% of the isolates collected were identified as C. cf. flagellaris, while 15% classified as C. cf. sigesbeckiae, 2% as C. kikuchii, and 3% as previously unreported Cercospora species associated with CLB in the United States. PCR-RFLP of cytochrome b (cytb) identified QoI-resistance conferred by the G143A substitution. Approximately 64 to 83% of isolates were determined to be QoI-resistant, and all contained the G143A substitution. Results of discriminatory dose assays using azoxystrobin (1 ppm) were 100% consistent with PCR-RFLP results. To our knowledge, this constitutes the first report of QoI resistance in CLB pathogen populations from Alabama, Arkansas, Kentucky, Mississippi, Missouri, Tennessee, and Texas. In areas where high frequencies of resistance have been identified, QoI fungicides should be avoided, and fungicide products with alternative modes-of-action should be utilized in the absence of CLB-resistant soybean cultivars.


Subject(s)
Ascomycota , Fungicides, Industrial , United States , Fungicides, Industrial/pharmacology , Cercospora , Glycine max , Phylogeny , Calmodulin/genetics , Histones/genetics , Arkansas , Quinones
4.
bioRxiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37425787

ABSTRACT

Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.

5.
Mol Plant Microbe Interact ; 36(10): 666-669, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37129280

ABSTRACT

Cercospora janseana causes narrow brown leaf spot of rice. A nearly complete telomere-to-telomere reference genome was assembled with a combination of Oxford Nanopore and Illumina sequences. The genome assembly has a total length of 39,075,509 bp and consists of 15 chromosomes, 14 of which have telomeric repeats at both ends. The assembly N50 is 2.97 Mb and the L50 is five contigs. RNA-seq-mediated gene annotation identified 10,850 genes, including 955 predicted secreted proteins and 361 predicted effector proteins. This highly contiguous and almost complete C. janseana reference genome will be a vital resource for further investigation of host-pathogen interactions and genome evolution within this pathosystem. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Oryza , Oryza/genetics , Genome , Molecular Sequence Annotation , Ascomycota/genetics
6.
Microbiol Resour Announc ; 12(4): e0104022, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36877060

ABSTRACT

Thirteen draft genome assemblies are presented for four Colletotrichum gloeosporioides complex species, namely, Colletotrichum aeschynomenes, Colletotrichum asianum, Colletotrichum fructicola, and Colletotrichum siamense, which were isolated from tropical tree hosts as endophytes.

7.
Fungal Biol ; 126(10): 623-630, 2022 10.
Article in English | MEDLINE | ID: mdl-36116894

ABSTRACT

Papaya (Carica papaya L.) is among the most important tropical fruits produced in Brazil and is grown in nearly every state. However, several diseases can affect papaya production. Anthracnose stands out among these diseases due to high postharvest yield losses. Previous studies identified Colletotrichum magna (invalid name) and Colletotrichum gloeosporioides causing anthracnose of papaya in Brazil, but species identification was inadequate due to reliance on nuclear ribosomal internal transcribed space (nrITS) and glutamine synthetase (GS) sequences. Thus, the diversity of Colletotrichum spp. causing papaya anthracnose in Brazil may be underestimated. The present study aims to identify the Colletotrichum species associated with papaya anthracnose in Brazil based on broad geographical sampling and multilocus phylogenetic analysis, as well as to assess the prevalence and aggressiveness of the species found. Here, we report C. chrysophilum, C. fructicola, C. gloeosporioides, C. karsti, C. okinawense, C. plurivorum, C. queenslandicum, C. siamense, C. theobromicola, Colletotrichum truncatum causing papaya anthracnose in Brazil. We are also synonymizing Colletotrichum corchorum-capsularis under C. truncatum. Colletotrichum okinawense was the most prevalent species in general and in most sampled locations, and with C. truncatum represents the most aggressive species.


Subject(s)
Carica , Colletotrichum , Brazil , Colletotrichum/genetics , DNA, Fungal , Glutamate-Ammonia Ligase , Phylogeny , Plant Diseases
8.
J Fungi (Basel) ; 8(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36012788

ABSTRACT

Far more biodiversity exists in Fungi than has been described, or could be described in several lifetimes, given current rates of species discovery. Although this problem is widespread taxonomically, our knowledge of animal-associated fungi is especially lacking. Fungi in the genus Pneumocystis are obligate inhabitants of mammal lungs, and they have been detected in a phylogenetically diverse array of species representing many major mammal lineages. The hypothesis that Pneumocystis cospeciate with their mammalian hosts suggests that thousands of Pneumocystis species may exist, potentially equal to the number of mammal species. However, only six species have been described, and the true correspondence of Pneumocystis diversity to host species boundaries is unclear. Here, we use molecular species delimitation to estimate the boundaries of Pneumocystis species sampled from 55 mammal species representing eight orders. Our results suggest that Pneumocystis species often colonize several closely related mammals, especially those in the same genus. Using the newly estimated ratio of fungal to host diversity, we estimate ≈4600 to 6250 Pneumocystis species inhabit the 6495 currently recognized extant mammal species. Additionally, we review the literature and find that only 240 (~3.7%) mammal species have been screened for Pneumocystis, and many detected Pneumocystis lineages are not represented by any genetic data. Although crude, our findings challenge the dominant perspective of strict specificity of Pneumocystis to their mammal hosts and highlight an abundance of undescribed diversity.

9.
J Invertebr Pathol ; 193: 107789, 2022 09.
Article in English | MEDLINE | ID: mdl-35772489

ABSTRACT

Insect predators are the most important natural enemies of the crapemyrtle bark scale (CMBS) in the USA. Mycopesticides (biocontrol fungi) are considered an IPM tool to increase CMBS mortality; however, their impacts on CMBS predators are unknown. The objectives of this study were to assess the abundance and diversity of CMBS natural enemies in Louisiana; evaluate the impacts of mycopesticides on survival of CMBS predators by life stage; and determine if entomopathogenic spores delivered to crapemyrtles are transferred to predators under field conditions. The mycopesticides Ancora® (Isaria fumosorosea PFR97), BioCeres® (Beauveria bassiana ANT-03), and BotaniGard® (B. bassiana GHA) were tested against the coccinellids Chilocorus spp. and Hyperaspis bigeminata under laboratory and field conditions. Adults and larvae of the coccinellids were treated with each mycopesticide and survival recorded over a 14-day period. The most common natural enemies on CMBS infested trees were the coccinellids Chilocorus cacti, C. stigma, and Hyperaspis bigeminata (Coleoptera: Coccinellidae). In laboratory bioassays BotaniGard® reduced survival of adults and larvae of both genera by at least 57%. BioCeres® reduced the survival of Chilocorus spp. adults by 40% and Ancora® reduced survival of H. bigeminata larvae by 69%. Under field conditions, CMBS infestations were sprayed with the mycopesticides and coccinellids were collected every other day for a two-week period. Spores of the applied mycopesticides were recovered from the coccinellids; however, it is not known if infection occurred in the field trial or spores were delivered to CMBS infestations by the coccinellids. We conclude that mycopesticides negatively impacted the survival of coccinellids in laboratory trials, and coccinellids can transport pathogen spores under field conditions.


Subject(s)
Beauveria , Coleoptera , Hemiptera , Animals , Larva/microbiology , Pest Control, Biological , Predatory Behavior
10.
Mycologia ; 113(2): 326-347, 2021.
Article in English | MEDLINE | ID: mdl-33555993

ABSTRACT

Taproot decline (TRD) is a disease of soybean that has been reported recently from the southern United States (U.S.). Symptoms of TRD include foliar interveinal chlorosis followed by necrosis. Darkened, charcoal-colored areas of thin stromatic tissue are evident on the taproot and lateral roots along with areas of necrosis within the root and white mycelia within the pith. Upright stromata typical of Xylaria can be observed on crop debris and emerging from infested roots in fields where taproot decline is present, but these have not been determined to contain fertile perithecia. Symptomatic plant material was collected across the known range of the disease in the southern U.S., and the causal agent was isolated from roots. Four loci, ⍺-actin (ACT), ß-tubulin (TUB2), the nuclear rDNA internal transcribed spacers (nrITS), and the RNA polymerase subunit II (RPB2), were sequenced from representative isolates. Both maximum likelihood and Bayesian phylogenetic analyses showed consistent clustering of representative TRD isolates in a highly supported clade within the Xylaria arbuscula species complex in the "HY" clade of the family Xylariaceae, distinct from any previously described taxa. In order to understand the origin of this pathogen, we sequenced herbarium specimens previously determined to be "Xylaria arbuscula" based on morphology and xylariaceous endophytes collected in the southern U.S. Some historical specimens from U.S. herbaria collected in the southern region as saprophytes as well as a single specimen from Martinique clustered within the "TRD" clade in phylogenetic analyses, suggesting a possible shift in lifestyle. The remaining specimens that clustered within the family Xylariaceae, but outside of the "TRD" clade, are reported. Both morphological evidence and molecular evidence indicate that the TRD pathogen is a novel species, which is described as Xylaria necrophora.


Subject(s)
Glycine max/microbiology , Plant Diseases/microbiology , Plant Roots/microbiology , Xylariales/genetics , Xylariales/pathogenicity , Bayes Theorem , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Genetic Variation , Phylogeny , United States , Xylariales/classification
11.
Plant Dis ; 105(9): 2395-2401, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33630686

ABSTRACT

Boxwood dieback, caused by Colletotrichum theobromicola, is spreading at an alarming rate in the boxwood industry in the United States. Although C. theobromicola has been accepted as a distinct species within the C. gloeosporioides species complex, it is difficult to distinguish it from other closely related species based on morphology. Moreover, molecular identification of C. theobromicola requires amplification and sequencing of multiple loci, which can be expensive and time consuming. Therefore, a diagnostic TaqMan real-time PCR assay was developed for early and accurate detection and quantification of C. theobromicola in boxwood. The study involved the design of species-specific primers and a TaqMan probe to differentiate C. theobromicola from other closely related Colletotrichum species. The primers and probe discriminate between C. theobromicola and other species in the C. gloeosporioides species complex and can detect C. theobromicola at very low concentrations, illustrating the high specificity and sensitivity of the assay. This TaqMan real-time PCR assay accurately and rapidly distinguishes boxwood dieback from other diseases with similar symptomatology, including Macrophoma blight, Phytophthora root rot, and Volutella blight, as well as some disorders produced by abiotic agents.


Subject(s)
Buxus , Colletotrichum , Colletotrichum/genetics , Plant Diseases , Real-Time Polymerase Chain Reaction , United States
12.
14.
Sci Rep ; 10(1): 11043, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632221

ABSTRACT

Apple bitter rot caused by Colletotrichum species is a growing problem worldwide. Colletotrichum spp. are economically important but taxonomically un-resolved. Identification of Colletotrichum spp. is critical due to potential species-level differences in pathogenicity-related characteristics. A 400-isolate collection from New York apple orchards were morphologically assorted to two groups, C. acutatum species complex (CASC) and C. gloeosporioides species complex (CGSC). A sub-sample of 44 representative isolates, spanning the geographical distribution and apple varieties, were assigned to species based on multi-locus phylogenetic analyses of nrITS, GAPDH and TUB2 for CASC, and ITS, GAPDH, CAL, ACT, TUB2, APN2, ApMat and GS genes for CGSC. The dominant species was C. fioriniae, followed by C. chrysophilum and a novel species, C. noveboracense, described in this study. This study represents the first report of C. chrysophilum and C. noveboracense as pathogens of apple. We assessed the enzyme activity and fungicide sensitivity for isolates identified in New York. All isolates showed amylolytic, cellulolytic and lipolytic, but not proteolytic activity. C. chrysophilum showed the highest cellulase and the lowest lipase activity, while C. noveboracense had the highest amylase activity. Fungicide assays showed that C. fioriniae was sensitive to benzovindiflupyr and thiabendazole, while C. chrysophilum and C. noveboracense were sensitive to fludioxonil, pyraclostrobin and difenoconazole. All species were pathogenic on apple fruit with varying lesion sizes. Our findings of differing pathogenicity-related characteristics among the three species demonstrate the importance of accurate species identification for any downstream investigations of Colletotrichum spp. in major apple growing regions.


Subject(s)
Colletotrichum/pathogenicity , Malus/microbiology , Plant Diseases/microbiology , Colletotrichum/classification , Colletotrichum/genetics , Drug Resistance, Fungal , Fruit/microbiology , Fungicides, Industrial/pharmacology , Microbial Sensitivity Tests , New York , Phylogeny , Species Specificity , Virulence
15.
Mol Phylogenet Evol ; 143: 106694, 2020 02.
Article in English | MEDLINE | ID: mdl-31786239

ABSTRACT

Colletotrichum is among the most important genera of fungal plant pathogens. Molecular phylogenetic studies over the last decade have resulted in a much better understanding of the evolutionary relationships and species boundaries within the genus. There are now approximately 200 species accepted, most of which are distributed among 13 species complexes. Given their prominence on agricultural crops around the world, rapid identification of a large collection of Colletotrichum isolates is routinely needed by plant pathologists, regulatory officials, and fungal biologists. However, there is no agreement on the best molecular markers to discriminate species in each species complex. Here we calculate the barcode gap distance and intra/inter-specific distance overlap to evaluate each of the most commonly applied molecular markers for their utility as a barcode for species identification. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone-3 (HIS3), DNA lyase (APN2), intergenic spacer between DNA lyase and the mating-type locus MAT1-2-1 (APN2/MAT-IGS), and intergenic spacer between GAPDH and a hypothetical protein (GAP2-IGS) have the properties of good barcodes, whereas sequences of actin (ACT), chitin synthase (CHS-1) and nuclear rDNA internal transcribed spacers (nrITS) are not able to distinguish most species. Finally, we assessed the utility of these markers for phylogenetic studies using phylogenetic informativeness profiling, the genealogical sorting index (GSI), and Bayesian concordance analyses (BCA). Although GAPDH, HIS3 and ß-tubulin (TUB2) were frequently among the best markers, there was not a single set of markers that were best for all species complexes. Eliminating markers with low phylogenetic signal tends to decrease uncertainty in the topology, regardless of species complex, and leads to a larger proportion of markers that support each lineage in the Bayesian concordance analyses. Finally, we reconstruct the phylogeny of each species complex using a minimal set of phylogenetic markers with the strongest phylogenetic signal and find the majority of species are strongly supported as monophyletic.


Subject(s)
Algal Proteins/genetics , Colletotrichum/genetics , Bayes Theorem , Colletotrichum/classification , DNA Barcoding, Taxonomic , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/genetics , Histones/genetics , Phylogeny , Sequence Alignment
16.
Syst Biol ; 69(1): 17-37, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31062852

ABSTRACT

Resolving deep divergences in the tree of life is challenging even for analyses of genome-scale phylogenetic data sets. Relationships between Basidiomycota subphyla, the rusts and allies (Pucciniomycotina), smuts and allies (Ustilaginomycotina), and mushroom-forming fungi and allies (Agaricomycotina) were found particularly recalcitrant both to traditional multigene and genome-scale phylogenetics. Here, we address basal Basidiomycota relationships using concatenated and gene tree-based analyses of various phylogenomic data sets to examine the contribution of several potential sources of bias. We evaluate the contribution of biological causes (hard polytomy, incomplete lineage sorting) versus unmodeled evolutionary processes and factors that exacerbate their effects (e.g., fast-evolving sites and long-branch taxa) to inferences of basal Basidiomycota relationships. Bayesian Markov Chain Monte Carlo and likelihood mapping analyses reject the hard polytomy with confidence. In concatenated analyses, fast-evolving sites and oversimplified models of amino acid substitution favored the grouping of smuts with mushroom-forming fungi, often leading to maximal bootstrap support in both concatenation and coalescent analyses. On the contrary, the most conserved data subsets grouped rusts and allies with mushroom-forming fungi, although this relationship proved labile, sensitive to model choice, to different data subsets and to missing data. Excluding putative long-branch taxa, genes with high proportions of missing data and/or with strong signal failed to reveal a consistent trend toward one or the other topology, suggesting that additional sources of conflict are at play. While concatenated analyses yielded strong but conflicting support, individual gene trees mostly provided poor support for any resolution of rusts, smuts, and mushroom-forming fungi, suggesting that the true Basidiomycota tree might be in a part of tree space that is difficult to access using both concatenation and gene tree-based approaches. Inference-based assessments of absolute model fit strongly reject best-fit models for the vast majority of genes, indicating a poor fit of even the most commonly used models. While this is consistent with previous assessments of site-homogenous models of amino acid evolution, this does not appear to be the sole source of confounding signal. Our analyses suggest that topologies uniting smuts with mushroom-forming fungi can arise as a result of inappropriate modeling of amino acid sites that might be prone to systematic bias. We speculate that improved models of sequence evolution could shed more light on basal splits in the Basidiomycota, which, for now, remain unresolved despite the use of whole genome data.


Subject(s)
Basidiomycota/classification , Classification/methods , Models, Genetic , Phylogeny , Basidiomycota/genetics , Genes, Fungal/genetics
17.
Data Brief ; 27: 104693, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31720340

ABSTRACT

Cercospora kikuchii (Tak. Matsumoto & Tomoy.) M.W. Gardner 1927 is an ascomycete fungal pathogen that causes Cercospora leaf blight and purple seed stain on soybean. Here, we report the first draft genome sequence and assembly of this pathogen. The C. kikuchii strain ARG_18_001 was isolated from soybean purple seed collected from San Pedro, Buenos Aires, Argentina, during the 2018 harvest. The genome was sequenced using a 2 × 150 bp paired-end method by Illumina NovaSeq 6000. The C. kikuchii protein-coding genes were predicted using FunGAP (Fungal Genome Annotation Pipeline). The draft genome assembly was 33.1 Mb in size with a GC-content of 53%. The gene prediction resulted in 14,856 gene models/14,721 protein coding genes. Genomic data of C. kikuchii presented here will be a useful resource for future studies of this pathosystem. The data can be accessed at GenBank under the accession number VTAY00000000 https://www.ncbi.nlm.nih.gov/nuccore/VTAY00000000.

18.
Mycologia ; 111(6): 1041-1055, 2019.
Article in English | MEDLINE | ID: mdl-31647754

ABSTRACT

Acrospermum is a poorly known genus of epibiotic and saprophytic species with a subcosmopolitan distribution. Here, we investigate the intriguing relationship between Acrospermum and its host plants in the fern family Polypodiaceae, where it occurs upon approximately 45 neotropical species. We conducted phylogenetic analyses using an eight-marker comprehensive ascomycete data set comprising 719 species representing all major lineages along with 23 new Acrospermum specimens sampled from ferns. We ask whether fern-dwelling Acrospermum are monophyletic, whether epibiotic Acrospermum have evolved independently from saprophytic ancestors, and identify anamorphic phases by incorporating sequences for all suspected taxa. Our results corroborate the placement of Acrospermales within the Dothideomycetes with strong support. However, the order remains incertae sedis due to weak support along the branches subtending the clade that includes the Acrospermales plus Dyfrolomycetales. Our results show a strong phylogenetic pattern in lifestyles but do not clearly identify an ancestral life history state. The first divergence in Acrospermaceae splits fungicolous taxa from taxa that inhabit plants; saprophytes and anamorphic phases found on angiosperms occur in both clades. Fungicolous species are monophyletic, whereas species with an epibiotic or necrotic life history upon plants are nonmonophyletic due to the position of the saprophyte A. longisporium. Previously, all Acrospermum collected from ferns were identified as A. maxonii. Our results indicate that this is not monophyletic due to the inclusion of Gonatophragmium triuniae. Two species are described herein as A. gorditum, sp. nov., and A. leucocephalum, sp. nov. We find no instances of co-cladogenesis; however, our ability to detect this is limited by the lack of resolution in the A. maxonii clade. Rather, we see that that the distribution of epibiotic Acrospermum is explained by the overlap between the ecological niche of the Acrospermum species and its host.


Subject(s)
Ascomycota/classification , Ferns/microbiology , Phylogeny , Ascomycota/isolation & purification , DNA Primers/genetics , Evolution, Molecular , Sequence Analysis, DNA
19.
Plant Dis ; 103(8): 1961-1966, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31124749

ABSTRACT

Anthracnose is one of the most important diseases of lima bean in Brazil. Previously, the disease was attributed exclusively to Colletotrichum truncatum. Therefore, this work aimed to characterize the diversity, prevalence, and virulence of Colletotrichum spp. associated with anthracnose in lima bean in Brazil. Here, we report the species C. truncatum, C. brevisporum, C. lobatum, C. plurivorum, and C. musicola in association with anthracnose of lima bean. All species were pathogenic to lima bean. In addition, several strains were found that represent novel lineages, presented here as Colletotrichum lineages 1 to 5. C. truncatum is the prevailing species and more virulent than all other species studied.


Subject(s)
Biodiversity , Colletotrichum , Phaseolus , Brazil , Colletotrichum/classification , Colletotrichum/pathogenicity , Colletotrichum/physiology , Phaseolus/microbiology , Phylogeny , Plant Diseases/microbiology , Prevalence , Virulence
20.
Fungal Biol ; 122(7): 677-691, 2018 07.
Article in English | MEDLINE | ID: mdl-29880203

ABSTRACT

Anthracnose is one of the most important plant diseases globally, occurring on a wide range of cultivated and wild host species. This study aimed to identify the Colletotrichum species associated with cashew anthracnose in Brazil, determine their phylogenetic relationships and geographical distribution, and provide some insight into the factors that may be influencing community composition. Colletotrichum isolates collected from symptomatic leaves, stems, inflorescences, and fruit of cultivated and wild cashew, across four Brazilian biomes, were identified as Colletotrichum chrysophilum, Colletotrichum fragariae, Colletotrichum fructicola, Colletotrichum gloeosporioides sensu stricto, Colletotrichum queenslandicum, Colletotrichum siamense and Colletotrichum tropicale. Colletotrichum siamense was the most dominant species. The greatest species richness was associated with cultivated cashew; leaves harbored more species than the other organs; the Atlantic Forest encompassed more species than the other biomes; and Pernambuco was the most species-rich location. However, accounting for the relative abundance of Colletotrichum species and differences in sample size across strata, the interpretation of which community is most diverse depends on how species are delimited. The present study provides valuable information about the Colletotrichum/cashew pathosystem, sheds light on the causal agents identification,and highlights the impact that species delimitation can have on ecological studies of fungi.


Subject(s)
Anacardium/microbiology , Biodiversity , Colletotrichum/isolation & purification , Brazil , Colletotrichum/classification , Colletotrichum/genetics , Crops, Agricultural/microbiology , Ecosystem , Molecular Typing , Phylogeny , Plant Diseases/microbiology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL