Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Gene Ther ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025983

ABSTRACT

Persistence of human immunodeficiency virus (HIV) reservoirs prevents viral eradication, and consequently HIV-infected patients require lifetime treatment with antiretroviral therapy (ART) [1-5]. Currently, there are no effective therapeutics to prevent HIV rebound upon ART cessation. Here we describe an HIV/SIV Rev-dependent lentiviral particle that can be administered to inhibit viral rebound [6-9]. Using simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, we demonstrate that the administration of pre-assembled SIV Rev-dependent lentiviral particles into SIVmac239-infected Indian rhesus macaques can lead to reduction of viral rebound upon ART termination. One of the injected animals, KC50, controlled plasma and CNS viremia to an undetectable level most of the time for over two years after ART termination. Surprisingly, detailed molecular and immunological characterization revealed that viremia control was concomitant with the induction of neutralizing antibodies (nAbs) following the administration of the Rev-dependent vectors. This study emphasizes the importance of neutralizing antibodies (nAbs) for viremia control [10-15], and also provides proof of concept that the Rev-dependent vector can be used to target viral reservoirs, including the CNS reservoirs, in vivo. However, future large-scale in vivo studies are needed to understand the potential mechanisms of viremia control induced by the Rev-dependent vector.

2.
Viruses ; 16(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39066335

ABSTRACT

The effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. In this pilot study, we exposed two pigtail macaques (PTMs) chronically infected with SIVmac239, exhibiting from very low to no CD4 T cells across all compartments, to SARS-CoV-2. We monitored the disease progression, viral replication, and evolution, and compared these outcomes with SIV-naïve PTMs infected with SARS-CoV-2. No overt signs of COVID-19 disease were observed in either animal, and the SARS-CoV-2 viral kinetics and evolution in the SIVmac239 PTMs were indistinguishable from those in the SIV-naïve PTMs in all sampled mucosal sites. However, the single-cell RNA sequencing of bronchoalveolar lavage cells revealed an infiltration of functionally inert monocytes after SARS-CoV-2 infection. Critically, neither of the SIV-infected PTMs mounted detectable anti-SARS-CoV-2 T-cell responses nor anti-SARS-CoV-2 binding or neutralizing antibodies. Thus, HIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants but may remove the ability of infected individuals to mount adaptive immune responses against SARS-CoV-2.


Subject(s)
COVID-19 , Coinfection , Disease Models, Animal , SARS-CoV-2 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Immunodeficiency Virus/immunology , COVID-19/immunology , COVID-19/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , SARS-CoV-2/immunology , Coinfection/immunology , Coinfection/virology , Virus Replication , Macaca nemestrina , Pilot Projects , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Load , CD4-Positive T-Lymphocytes/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
3.
J Neurovirol ; 30(1): 86-99, 2024 02.
Article in English | MEDLINE | ID: mdl-38453879

ABSTRACT

Simian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aß42/Aß40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection. During varicella and zoster, every RM had variable changes in serum and CSF cytokine and Aß42/Aß40 levels compared to pre-inoculation levels. Overall, peripheral infection appears to affect CNS cytokine and Aß42/Aß40 levels independent of serum responses, suggesting that peripheral disease may contribute to CNS disease.


Subject(s)
Amyloid beta-Peptides , Cytokines , Macaca mulatta , Animals , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Cytokines/cerebrospinal fluid , Cytokines/blood , Virus Activation , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Varicellovirus/genetics , Varicellovirus/immunology , Herpesvirus 3, Human/pathogenicity , Herpesvirus 3, Human/immunology , Herpesviridae Infections/cerebrospinal fluid , Herpesviridae Infections/virology , Herpesviridae Infections/blood , Herpesviridae Infections/immunology , Male , Herpes Zoster/cerebrospinal fluid , Herpes Zoster/virology , Herpes Zoster/blood , Herpes Zoster/immunology , Monkey Diseases/virology , Monkey Diseases/cerebrospinal fluid , Monkey Diseases/blood
4.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014096

ABSTRACT

Persistent and uncontrolled SARS-CoV-2 replication in immunocompromised individuals has been observed and may be a contributing source of novel viral variants that continue to drive the pandemic. Importantly, the effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. Here we conducted a pilot study wherein two pigtail macaques (PTM) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and monitored for six weeks for clinical disease, viral replication, and viral evolution, and compared to our previously published cohort of SIV-naïve PTM infected with SARS-CoV-2. At the time of SARS-CoV-2 infection, one PTM had minimal to no detectable CD4+ T cells in gut, blood, or bronchoalveolar lavage (BAL), while the other PTM harbored a small population of CD4+ T cells in all compartments. Clinical signs were not observed in either PTM; however, the more immunocompromised PTM exhibited a progressive increase in pulmonary infiltrating monocytes throughout SARS-CoV-2 infection. Single-cell RNA sequencing (scRNAseq) of the infiltrating monocytes revealed a less activated/inert phenotype. Neither SIV-infected PTM mounted detectable anti-SARS-CoV-2 T cell responses in blood or BAL, nor anti-SARS-CoV-2 neutralizing antibodies. Interestingly, despite the diminished cellular and humoral immune responses, SARS-CoV-2 viral kinetics and evolution were indistinguishable from SIV-naïve PTM in all sampled mucosal sites (nasal, oral, and rectal), with clearance of virus by 3-4 weeks post infection. SIV-induced immunodeficiency significantly impacted immune responses to SARS-CoV-2 but did not alter disease progression, viral kinetics or evolution in the PTM model. SIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants.

5.
Res Sq ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37886544

ABSTRACT

Simian varicella virus (SVV) produces peripheral inflammatory responses during varicella (primary infection) and zoster (reactivation) in rhesus macaques (RM). However, it is unclear if peripheral measures are accurate proxies for central nervous system (CNS) responses. Thus, we analyzed cytokine and Aß42/Aß40 changes in paired serum and cerebrospinal fluid (CSF) during the course of infection. During varicella and zoster, every RM had variable changes in serum and CSF cytokine and Aß42/Aß40 levels compared to pre-inoculation levels. Overall, peripheral infection appears to affect CNS cytokine and Aß42/Aß40 levels independent of serum responses, suggesting that peripheral disease may contribute to CNS disease.

6.
Front Immunol ; 14: 1085883, 2023.
Article in English | MEDLINE | ID: mdl-36845143

ABSTRACT

Introduction: ARS-CoV-2 is a respiratory pathogen currently causing a worldwide pandemic, with resulting pathology of differing severity in humans, from mild illness to severe disease and death. The rhesus macaque model of COVID-19 was utilized to evaluate the added benefit of prophylactic administration of human post-SARS-CoV-2 infection convalescent plasma (CP) on disease progression and severity. Methods: A pharmacokinetic (PK) study using CP in rhesus monkeys preceded the challenge study and revealed the optimal time of tissue distribution for maximal effect. Thereafter, CP was administered prophylactically three days prior to mucosal SARS-CoV-2 viral challenge. Results: Results show similar viral kinetics in mucosal sites over the course of infection independent of administration of CP or normal plasma, or historic controls with no plasma. No changes were noted upon necropsy via histopathology, although there were differences in levels of vRNA in tissues, with both normal and CP seemingly blunting viral loads. Discussion: Results indicate that prophylactic administration with mid-titer CP is not effective in reducing disease severity of SARS-CoV-2 infection in the rhesus COVID-19 disease model.


Subject(s)
COVID-19 , Animals , Humans , Macaca mulatta , SARS-CoV-2 , Immunization, Passive/methods , COVID-19 Serotherapy
7.
NPJ Vaccines ; 7(1): 164, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36526642

ABSTRACT

Inhalation of the biothreat agent, ricin toxin (RT), provokes a localized inflammatory response associated with pulmonary congestion, edema, neutrophil infiltration, and severe acute respiratory distress. The extreme toxicity of RT is the result of the toxin's B chain (RTB) promoting rapid uptake into alveolar macrophages and lung epithelial cells, coupled with the A chain's (RTA) potent ribosome-inactivating properties. We previously reported that intramuscular vaccination of rhesus macaques with a lyophilized, alum-adsorbed recombinant RTA subunit vaccine (RiVax®) was sufficient to confer protection against a lethal dose of aerosolized RT. That study implicated RT-specific serum IgG, toxin-neutralizing activity (TNA), and epitope-specific responses as being associated with immunity. However, it was not possible to define actual correlates of protection (COP) because all vaccinated animals survived the RT challenge. We addressed the issue of COP in the current study, by vaccinating groups of rhesus macaques with RiVax® following the previously determined protective regimen (100 µg on study days 0, 30 and 60) or one of two anticipated suboptimal regimens (100 µg on study days 30 and 60; 35 µg on study days 0, 30, and 60). Two unvaccinated animals served as controls. The animals were challenged with ~5 × LD50s of aerosolized RT on study day 110. We report that all vaccinated animals seroconverted prior to RT challenge, with the majority also having measurable TNA, although neither antibody levels nor TNA reached statistical significance with regard to a correlation with protection. By contrast, survival correlated with pre-challenge, epitope-specific serum IgG levels, derived from a competitive sandwich ELISA using a panel of toxin-neutralizing monoclonal antibodies directed against distinct epitopes on RiVax®. The identification of a species-neutral, competitive ELISA that correlates with vaccine-induced protection against RT in nonhuman represents an important advance in the development of medical countermeasures (MCM) against a persistent biothreat.

8.
Commun Biol ; 5(1): 1380, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36526890

ABSTRACT

Although most SARS-CoV-2 infections are mild, some patients develop systemic inflammation and progress to acute respiratory distress syndrome (ARDS). However, the cellular mechanisms underlying this spectrum of disease remain unclear. γδT cells are T lymphocyte subsets that have key roles in systemic and mucosal immune responses during infection and inflammation. Here we show that peripheral γδT cells are rapidly activated following aerosol or intra-tracheal/intra-nasal (IT/IN) SARS-CoV-2 infection in nonhuman primates. Our results demonstrate a rapid expansion of Vδ1 γδT cells at day1 that correlate significantly with lung viral loads during the first week of infection. Furthermore, increase in levels of CCR6 and Granzyme B expression in Vδ1 T cells during viral clearance imply a role in innate-like epithelial barrier-protective and cytotoxic functions. Importantly, the early activation and mobilization of circulating HLA-DR+CXCR3+ γδT cells along with significant correlations of Vδ1 T cells with IL-1Ra and SCF levels in bronchoalveolar lavage suggest a novel role for Vδ1 T cells in regulating lung inflammation during aerosol SARS-CoV-2 infection. A deeper understanding of the immunoregulatory functions of MHC-unrestricted Vδ1 T cells in lungs during early SARS-CoV-2 infection is particularly important in the wake of emerging new variants with increased transmissibility and immune evasion potential.


Subject(s)
COVID-19 , Animals , COVID-19/metabolism , SARS-CoV-2 , T-Lymphocyte Subsets , Inflammation/metabolism , Primates
9.
Nat Commun ; 13(1): 4823, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973985

ABSTRACT

Early antiretroviral therapy (ART) in HIV-infected infants generally fails to achieve a sustained state of ART-free virologic remission, even after years of treatment. Our studies show that viral reservoir seeding is different in neonatal macaques intravenously exposed to SIV at birth, in contrast to adults. Furthermore, one month of ART including an integrase inhibitor, initiated at day 3, but not day 4 or 5 post infection, efficiently and rapidly suppresses viremia to undetectable levels. Intervention initiated at day 3 post infection and continued for 9 months achieves a sustained virologic remission in 4 of 5 infants. Collectively, an early intervention strategy within a key timeframe and regimen may result in viral remission or successful post-exposure prophylaxis for neonatal SIV infection, which may be clinically relevant for optimizing treatment strategies for HIV-infected or exposed infants.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Viral Load , Viremia/drug therapy
10.
PLoS Pathog ; 18(7): e1010618, 2022 07.
Article in English | MEDLINE | ID: mdl-35789343

ABSTRACT

The novel coronavirus SARS-CoV-2 emerged in late 2019, rapidly reached pandemic status, and has maintained global ubiquity through the emergence of variants of concern. Efforts to develop animal models have mostly fallen short of recapitulating severe disease, diminishing their utility for research focusing on severe disease pathogenesis and life-saving medical countermeasures. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species of nonhuman primates (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM). Species-specific cohorts were experimentally infected with SARS-CoV-2 by either direct mucosal (intratracheal + intranasal) instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated analogous viral loads in all compartments by either exposure route although the magnitude and duration of viral loading was marginally greater in AGMs than RMs. Clinical onset was nearly immediate (+1dpi) in the mucosal exposure cohort whereas clinical signs and cytokine responses in aerosol exposure animals began +7dpi. Pathologies conserved in both species and both exposure modalities include pulmonary myeloid cell influx, development of pleuritis, and extended lack of regenerative capacity in the pulmonary compartment. Demonstration of conserved pulmonary pathology regardless of species and exposure route expands our understanding of how SARS-CoV-2 infection may lead to ARDS and/or functional lung damage and demonstrates the near clinical response of the nonhuman primate model for anti-fibrotic therapeutic evaluation studies.


Subject(s)
COVID-19 , Aerosols , Animals , Chlorocebus aethiops , Disease Models, Animal , Humans , Lung/pathology , Macaca mulatta , SARS-CoV-2
11.
PLoS Pathog ; 18(6): e1010507, 2022 06.
Article in English | MEDLINE | ID: mdl-35714165

ABSTRACT

The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Endocytosis , Gene Products, env/genetics , Macaca mulatta/metabolism , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/metabolism
12.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: mdl-35746639

ABSTRACT

Primary simian varicella virus (SVV) infection and reactivation in nonhuman primates is a valuable animal model in the study of varicella zoster virus disease [varicella (chickenpox) and herpes zoster (shingles)]. To understand SVV pathogenesis in skin, we inoculated 10 rhesus macaques with SVV, resulting in varicella rash. After the establishment of latency, eight of the monkeys were immunosuppressed using tacrolimus with or without irradiation and prednisone and two monkeys were not immunosuppressed. Zoster rash developed in all immunosuppressed monkeys and in one non-immunosuppressed monkey. Five monkeys had recurrent zoster. During varicella and zoster, SVV DNA in skin scrapings ranged from 50 to 107 copies/100 ng of total DNA and 2-127 copies/100 ng of total DNA, respectively. Detection of SVV DNA in blood during varicella was more frequent and abundant compared to that of zoster. During varicella and zoster, SVV antigens colocalized with neurons expressing ß-III tubulin in epidermis, hair follicles, and sweat glands, suggesting axonal transport of the virus. Together, we have demonstrated that both SVV DNA and antigens can be detected in skin lesions during varicella and zoster, providing the basis for further studies on SVV skin pathogenesis, including immune responses and mechanisms of peripheral spread.


Subject(s)
Chickenpox , Exanthema , Herpes Zoster , Varicellovirus , Animals , Herpesvirus 3, Human/physiology , Macaca mulatta , Varicellovirus/genetics
13.
Pathogens ; 11(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35631051

ABSTRACT

Uptake of the Lyme disease spirochete by its tick vector requires not only chemical signals present in the tick's saliva but a responsive phenotype by the Borrelia burgdorferi living in the mammalian host. This is the principle behind xenodiagnosis, wherein pathogen is detected by vector acquisition. To study migration of B. burgdorferi toward Ixodes scapularis tick saliva, with the goal of identifying chemoattractant molecules, we tested multiple assays and compared migration of host-adapted spirochetes to those cultured in vitro. We tested mammalian host-adapted spirochetes, along with those grown in culture at 34 °C, for their relative attraction to tick saliva or the nutrient N-acetyl-D-glucosamine (D-GlcNAc) and its dimer chitobiose using two different experimental designs. The host-adapted B. burgdorferi showed greater preference for tick saliva over the nutrients, whereas the cultured incubator-grown B. burgdorferi displayed no significant attraction to saliva versus a significant response to the nutrients. Our results not only describe a validated migration assay for studies of the Lyme disease agent, but provide a further understanding of how growth conditions and phenotype of B. burgdorferi are related to vector acquisition.

14.
Nat Commun ; 13(1): 1745, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365631

ABSTRACT

Neurological manifestations are a significant complication of coronavirus disease (COVID-19), but underlying mechanisms aren't well understood. The development of animal models that recapitulate the neuropathological findings of autopsied brain tissue from patients who died from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are critical for elucidating the neuropathogenesis of infection and disease. Here, we show neuroinflammation, microhemorrhages, brain hypoxia, and neuropathology that is consistent with hypoxic-ischemic injury in SARS-CoV-2 infected non-human primates (NHPs), including evidence of neuron degeneration and apoptosis. Importantly, this is seen among infected animals that do not develop severe respiratory disease, which may provide insight into neurological symptoms associated with "long COVID". Sparse virus is detected in brain endothelial cells but does not associate with the severity of central nervous system (CNS) injury. We anticipate our findings will advance our current understanding of the neuropathogenesis of SARS-CoV-2 infection and demonstrate SARS-CoV-2 infected NHPs are a highly relevant animal model for investigating COVID-19 neuropathogenesis among human subjects.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Brain , Endothelial Cells , Humans , Primates
15.
J Infect Dis ; 226(9): 1588-1592, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35429402

ABSTRACT

Breakthrough gastrointestinal COVID-19 was observed after experimental SARS-CoV-2 upper mucosal infection in a rhesus macaque undergoing low-dose monoclonal antibody prophylaxis. High levels of viral RNA were detected in intestinal sites contrasting with minimal viral replication in upper respiratory mucosa. Sequencing of virus recovered from tissue in 3 gastrointestinal sites and rectal swab revealed loss of furin cleavage site deletions present in the inoculating virus stock and 2 amino acid changes in spike that were detected in 2 colon sites but not elsewhere, suggesting compartmentalized replication and intestinal viral evolution. This suggests suboptimal antiviral therapies promote viral sequestration in these anatomies.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal , Macaca mulatta
16.
Res Sq ; 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35411346

ABSTRACT

The systemic nature of SARS-CoV-2 infection is highly recognized, but poorly characterized. A non-invasive and unbiased method is needed to clarify whole body spatiotemporal dynamics of SARS-CoV-2 infection after transmission. We recently developed a probe based on the anti-SARS-CoV-2 spike antibody CR3022 to study SARS-CoV-2 pathogenesis in vivo. Herein, we describe its use in immunoPET to investigate SARS-CoV-2 infection of three rhesus macaques. Using PET/CT imaging of macaques at different times post-SARS-CoV-2 inoculation, we track the 64Cu-labelled CR3022-F(ab')2 probe targeting the spike protein of SARS-CoV-2 to study the dynamics of infection within the respiratory tract and uncover novel sites of infection. Using this method, we uncovered differences in lung pathology between infection with the WA1 isolate and the delta variant, which were readily corroborated through computed tomography scans. The 64Cu-CR3022-probe also demonstrated dynamic changes occurring between 1- and 2-weeks post-infection. Remarkably, a robust signal was seen in the male genital tract (MGT) of all three animals studied. Infection of the MGT was validated by immunofluorescence imaging of infected cells in the testicular and penile tissue and severe pathology was observed in the testes of one animal at 2-weeks post-infection. The results presented here underscore the utility of using immunoPET to study the dynamics of SARS-CoV-2 infection to understand its pathogenicity and discover new anatomical sites of viral replication. We provide direct evidence for SARS-CoV-2 infection of the MGT in rhesus macaques revealing the possible pathologic outcomes of viral replication at these sites.

17.
bioRxiv ; 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35262081

ABSTRACT

The systemic nature of SARS-CoV-2 infection is highly recognized, but poorly characterized. A non-invasive and unbiased method is needed to clarify whole body spatiotemporal dynamics of SARS-CoV-2 infection after transmission. We recently developed a probe based on the anti-SARS-CoV-2 spike antibody CR3022 to study SARS-CoV-2 pathogenesis in vivo. Herein, we describe its use in immunoPET to investigate SARS-CoV-2 infection of three rhesus macaques. Using PET/CT imaging of macaques at different times post-SARS-CoV-2 inoculation, we track the 64Cu-labelled CR3022-F(ab')2 probe targeting the spike protein of SARS-CoV-2 to study the dynamics of infection within the respiratory tract and uncover novel sites of infection. Using this method, we uncovered differences in lung pathology between infection with the WA1 isolate and the delta variant, which were readily corroborated through computed tomography scans. The 64Cu-CR3022-probe also demonstrated dynamic changes occurring between 1- and 2-weeks post-infection. Remarkably, a robust signal was seen in the male genital tract (MGT) of all three animals studied. Infection of the MGT was validated by immunofluorescence imaging of infected cells in the testicular and penile tissue and severe pathology was observed in the testes of one animal at 2-weeks post-infection. The results presented here underscore the utility of using immunoPET to study the dynamics of SARS-CoV-2 infection to understand its pathogenicity and discover new anatomical sites of viral replication. We provide direct evidence for SARS-CoV-2 infection of the MGT in rhesus macaques revealing the possible pathologic outcomes of viral replication at these sites.

18.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: mdl-35062343

ABSTRACT

The central nervous system (CNS) HIV reservoir is an obstacle to achieving an HIV cure. The basal ganglia harbor a higher frequency of SIV than other brain regions in the SIV-infected rhesus macaques of Chinese-origin (chRMs) even on suppressive combination antiretroviral therapy (ART). Since residual HIV/SIV reservoir is associated with inflammation, we characterized the neuroinflammation by gene expression and systemic levels of inflammatory molecules in healthy controls and SIV-infected chRMs with or without ART. CCL2, IL-6, and IFN-γ were significantly reduced in the cerebrospinal fluid (CSF) of animals receiving ART. Moreover, there was a correlation between levels of CCL2 in plasma and CSF, suggesting the potential use of plasma CCL2 as a neuroinflammation biomarker. With higher SIV frequency, the basal ganglia of untreated SIV-infected chRMs showed an upregulation of secreted phosphoprotein 1 (SPP1), which could be an indicator of ongoing neuroinflammation. While ART greatly reduced neuroinflammation in general, proinflammatory genes, such as IL-9, were still significantly upregulated. These results expand our understanding of neuroinflammation and signaling in SIV-infected chRMs on ART, an excellent model to study HIV/SIV persistence in the CNS.


Subject(s)
Antiretroviral Therapy, Highly Active , Macaca mulatta/virology , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus , Transcriptome , Animals , Brain , Central Nervous System , Chemokines/metabolism , China , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Gene Expression Profiling , HIV , HIV Infections/blood , HIV Infections/genetics , HIV Infections/metabolism , Influenza A virus , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/immunology
19.
Trends Mol Med ; 28(2): 123-142, 2022 02.
Article in English | MEDLINE | ID: mdl-34955425

ABSTRACT

Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Lung/diagnostic imaging , Positron Emission Tomography Computed Tomography , Primates
20.
J Med Primatol ; 51(1): 45-48, 2022 02.
Article in English | MEDLINE | ID: mdl-34693542

ABSTRACT

Tracheal disruption is a previously unreported complication of nonhuman primate social trauma. Two cases were identified in rhesus macaques with subcutaneous emphysema. These cases resolved with medical management and demonstrate that the combined use of radiography and tracheoscopy allows rapid assessment and diagnosis of tracheal trauma in nonhuman primates.


Subject(s)
Trachea , Animals , Macaca mulatta , Trachea/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL