Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 10(2): 265-269, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30547594

ABSTRACT

We report an experimental study of iodomethane attosecond transient absorption spectroscopy (ATAS) in the region of iodine 4d core-to-valence/Rydberg excitation. Similar to previous atomic experiments, extreme ultraviolet near-infrared (XUV-NIR) delay-dependent absorbance changes reflect a light-induced phase due to an NIR-field driven AC Stark shift of the excited states, as well as pathway interferences arising from couplings between neighboring states. As a novel aspect of molecular ATAS, we observe pronounced differences between the ATAS signatures of valence and Rydberg states. While the core-to-valence transitions carry the majority of the XUV oscillator strength, the core-to-Rydberg transitions are dominantly affected by a moderately strong, nonionizing NIR field. Our experimental findings are corroborated by ab initio calculations and ATAS simulations.

2.
Nature ; 564(7734): 91-94, 2018 12.
Article in English | MEDLINE | ID: mdl-30487603

ABSTRACT

Refraction is a well-known optical phenomenon that alters the direction of light waves propagating through matter. Microscopes, lenses and prisms based on refraction are indispensable tools for controlling light beams at visible, infrared, ultraviolet and X-ray wavelengths1. In the past few decades, a range of extreme-ultraviolet and soft-X-ray sources has been developed in laboratory environments2-4 and at large-scale facilities5,6. But the strong absorption of extreme-ultraviolet radiation in matter hinders the development of refractive lenses and prisms in this spectral region, for which reflective mirrors and diffractive Fresnel zone plates7 are instead used for focusing. Here we demonstrate control over the refraction of extreme-ultraviolet radiation by using a gas jet with a density gradient across the profile of the extreme-ultraviolet beam. We produce a gas-phase prism that leads to a frequency-dependent deflection of the beam. The strong deflection near to atomic resonances is further used to develop a deformable refractive lens for extreme-ultraviolet radiation, with low absorption and a focal length that can be tuned by varying the gas pressure. Our results open up a route towards the transfer of refraction-based techniques, which are well established in other spectral regions, to the extreme-ultraviolet domain.

3.
J Chem Phys ; 145(1): 011101, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27394091

ABSTRACT

Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ(*) excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

SELECTION OF CITATIONS
SEARCH DETAIL