Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Appl Phys ; 122(2): 024902, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28804157

ABSTRACT

High-volume production of hyperpolarized 129Xe by spin-exchange optical pumping (SEOP) has historically fallen short of theoretical predictions. Recently, this shortfall was proposed to be caused by the formation of alkali metal clusters during optical pumping. However, this hypothesis has yet to be verified experimentally. Here, we seek to detect the presence of alkali particles using a combination of both transmission (TEM) and scanning (SEM) electron microscopy. From TEM studies, we observe the presence of particles exhibiting sizes ranging from approximately 0.2 to 1 µm and present at densities of order 10 s of particles per 100 square microns. Particle formation was more closely associated with extensive cell usage history than short-term ([Formula: see text]1 h) SEOP exposure. From the SEM studies, we observe pits on the cell surface. These pits are remarkably smooth, were frequently found adjacent to Rb particles, and located predominantly on the front face of the cells; they range in size from 1 to 5 µm. Together, these findings suggest that Rb particles do form during the SEOP process and at times can impart sufficient energy to locally alter the Pyrex surface.

2.
Am J Transplant ; 17(7): 1895-1904, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28371091

ABSTRACT

Bronchial stenosis in lung transplant recipients is a common disorder that adversely affects clinical outcomes. It is evaluated by spirometry, CT scanning, and bronchoscopy with significant limitations. We hypothesize that MRI using both ultrashort echo time (UTE) scans and hyperpolarized (HP) 129 Xe gas can offer structural and functional assessment of bronchial stenosis seen after lung transplantation. Six patients with lung transplantation-related bronchial stenosis underwent HP 129 Xe MRI and UTE MRI in the same session. Three patients subsequently underwent airway stent placement and had repeated MRI at 4-week follow-up. HP 129 Xe MRI depicted decreased ventilation distal to the stenotic airway. After airway stent placement, MRI showed that low-ventilation regions had decreased (35% vs. 27.6%, p = 0.006) and normal-ventilation regions had increased (17.9% vs. 27.6%, p = 0.04) in the stented lung. Improved gas transfer was also seen on 129 Xe MRI. There was a good correlation between UTE MRI and independent bronchoscopic airway diameter assessment (Pearson correlation coefficient = 0.92). This pilot study shows that UTE and HP 129 Xe MRI are feasible in patients with bronchial stenosis related to lung transplantation and may provide structural and functional airway assessment to guide treatment. These conclusions need to be confirmed with larger studies.


Subject(s)
Bronchial Diseases/diagnosis , Constriction, Pathologic/diagnosis , Graft Rejection/diagnosis , Image Processing, Computer-Assisted/methods , Lung Transplantation/adverse effects , Magnetic Resonance Imaging/methods , Postoperative Complications/diagnosis , Adult , Aged , Bronchial Diseases/etiology , Bronchoscopy , Constriction, Pathologic/etiology , Female , Follow-Up Studies , Graft Rejection/etiology , Graft Survival , Humans , Male , Middle Aged , Postoperative Complications/etiology , Prognosis , Risk Factors , Transplant Recipients , Young Adult
3.
Phys Rev A ; 90(2): 023406, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25400489

ABSTRACT

The ability to produce liter volumes of highly spin-polarized 129Xe enables a wide range of investigations, most notably in the fields of materials science and biomedical MRI. However, for nearly all polarizers built to date, both peak 129Xe polarization and the rate at which it is produced fall far below those predicted by the standard model of Rb metal vapor, spin-exchange optical pumping (SEOP). In this work, we comprehensively characterized a high-volume, flow-through 129Xe polarizer using three different SEOP cells with internal volumes of 100, 200 and 300 cc and two types of optical sources: a broad-spectrum 111-W laser (FWHM = 1.92 nm) and a line-narrowed 71-W laser (FWHM = 0.39 nm). By measuring 129Xe polarization as a function of gas flow rate, we extracted peak polarization and polarization production rate across a wide range of laser absorption levels. Peak polarization for all cells consistently remained a factor of 2-3 times lower than predicted at all absorption levels. Moreover, although production rates increased with laser absorption, they did so much more slowly than predicted by the standard theoretical model and basic spin exchange efficiency arguments. Underperformance was most notable in the smallest optical cells. We propose that all these systematic deviations from theory can be explained by invoking the presence of paramagnetic Rb clusters within the vapor. Cluster formation within saturated alkali vapors is well established and their interaction with resonant laser light was recently shown to create plasma-like conditions. Such cluster systems cause both Rb and 129Xe depolarization, as well as excess photon scattering. These effects were incorporated into the SEOP model by assuming that clusters are activated in proportion to excited-state Rb number density and by further estimating physically reasonable values for the nanocluster-induced, velocity-averaged spin-destruction cross-section for Rb (<σcluster-Rbv> ≈4×10-7 cm3s-1), 129Xe relaxation cross-section (<σcluster-Xev> ≈ 4×10-13 cm3s-1), and a non-wavelength-specific, photon-scattering cross-section (σcluster ≈ 1×10-12 cm2). The resulting modified SEOP model now closely matches experimental observations.

4.
Magn Reson Med ; 53(6): 1341-6, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15906306

ABSTRACT

In this experiment, Sprague-Dawley rats with elastase-induced emphysema were imaged using hyperpolarized (3)He MRI. Regional fractional ventilation r, the fraction of gas replaced with a single tidal breath, was calculated from a series of images in a wash-in study of hyperpolarized gas. We compared the regional fractional ventilation in these emphysematous rats to the regional fractional ventilations we calculated from a previous baseline study in healthy Sprague-Dawley rats. We found that there were differences in the maps of fractional ventilation and its associated frequency distribution between the healthy and emphysematous rat lungs. Fractional ventilation tended to be much lower in emphysematous rats than in normal rats. With this information, we can use data on fractional ventilation to regionally distinguish between healthy and emphysematous portions of the lung. The successful implementation of such a technique on a rat model could lead to work toward the future implementation of this technique in human patients.


Subject(s)
Helium , Magnetic Resonance Imaging/methods , Pulmonary Emphysema/physiopathology , Animals , Disease Models, Animal , Image Processing, Computer-Assisted , Isotopes , Male , Pancreatic Elastase , Pulmonary Ventilation , Rats , Rats, Sprague-Dawley
5.
Acad Radiol ; 11(10): 1171-9, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15530811

ABSTRACT

RATIONALE AND OBJECTIVES: The aim of this study was to establish a standardized procedure for the measurement of regional fractional ventilation in a healthy rat model as a baseline for further studies of pulmonary disorder models. MATERIALS AND METHODS: The lungs of five healthy male Sprague-Dawley rats were imaged using hyperpolarized helium-3 magnetic resonance imaging. From these images, regional fractional ventilation was calculated and maps generated detailing the distribution of fractional ventilation in the lung. The 1.56 mm x 1.56 mm x 4 mm regions of interest were assigned on 5 cm x 5 cm field of view lung maps. Histograms were also generated showing the frequency distribution of fractional ventilation values. To compare fractional ventilation values between animals, the ventilation procedure was standardized to results from individual pulmonary function tests. Each animal's spontaneous tidal volume, respiratory rate, and inspiration percentage (percent of total respiratory cycle in inspiration) were used in their mechanical ventilation settings. RESULTS: Results were similar among all five healthy rats based on examination of ventilation distribution maps and frequency distribution histograms. Mean (0.13) and standard deviation (0.07) were calculated for fractional ventilation in each animal. However, these values were determined to be influenced by slice selection, and therefore the maps and histograms were favored in analysis of results. CONCLUSION: This study shows consistent results in healthy rat lungs and will serve as a baseline study for future measurements in emphysematous rat lungs.


Subject(s)
Helium , Magnetic Resonance Imaging/methods , Pulmonary Alveoli/anatomy & histology , Animals , Isotopes , Male , Models, Animal , Pulmonary Alveoli/physiology , Pulmonary Ventilation , Rats , Rats, Sprague-Dawley
6.
Phys Rev Lett ; 88(11): 113201, 2002 Mar 18.
Article in English | MEDLINE | ID: mdl-11909399

ABSTRACT

We identify the formation of bound 129Xe-Xe molecules as the primary fundamental spin-relaxation process at densities below 14 amagat. Low pressure Xe relaxation rate measurements as a function of gas composition show that Xe-Xe molecular relaxation contributes 1/T1 = 1/4.1 h to the total observed relaxation rate. The measured rate is consistent with theoretical estimates deduced from previously measured NMR chemical shifts. At atmospheric pressure the molecular relaxation is more than an order of magnitude stronger than binary relaxation. Confusion of molecular and wall relaxation mechanisms has historically caused wall relaxation rates to be overestimated.

7.
NMR Biomed ; 13(4): 220-8, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10867700

ABSTRACT

One of the major goals of hyperpolarized-gas MR imaging has been to obtain (129)Xe dissolved-phase images in humans. Since the dissolved-phase signal is much weaker than the gas-phase signal, highly optimized MR pulse sequences are required to obtain adequate images during a single breath-hold. In particular, a solid understanding of the temporal dynamics of xenon as it passes from the lung gas spaces into the parenchyma, the blood and other downstream compartments is absolutely essential. Spectroscopy experiments were performed in the canine chest to elucidate the behavior of xenon exchange in the lung. The experiments covered a time range from 1 ms to 9 s and therefore considerably extend the data currently available in the literature. It was found that the integrals of the dissolved-phase resonances approached plateau values within approximately 200 ms, and then increased again after approximately 1 s. This behavior suggests an early saturation of the parenchyma before xenon reaches downstream compartments. Mono-exponential recovery curves with time constants on the order of 100 ms were fit to the data. These results potentially provide information on several underlying physiological parameters of the lung, including the parenchymal and blood volumes as well as the diffusion properties of lung tissue.


Subject(s)
Lung/physiology , Respiratory Mechanics , Xenon Radioisotopes , Animals , Dogs , Female , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Respiratory Function Tests , Time Factors
8.
Magn Reson Med ; 42(4): 721-8, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10502761

ABSTRACT

In imaging of hyperpolarized noble gases, a knowledge of the diffusion coefficient (D) is important both as a contrast mechanism and in the design of pulse sequences. We have made diffusion coefficient maps of both hyperpolarized (3)He and (129)Xe in guinea pig lungs. Along the length of the trachea, (3)He D values were on average 2.4 cm(2)/sec, closely reproducing calculated values for free gas (2.05 cm(2)/sec). The (3)He D values measured perpendicular to the length of the trachea were approximately a factor of two less, indicating restriction to diffusion. Further evidence of restricted diffusion was seen in the distal pulmonary airspaces as the average (3)He D was 0.16 cm(2)/sec. An additional cause for the smaller (3)He D in the lung was due to the presence of air, which is composed of heavier and larger gases. The (129)Xe results show similar trends, with the trachea D averaging 0.068 cm(2)/sec and the lung D averaging 0.021 cm(2)/sec. Magn Reson Med 42:721-728, 1999.


Subject(s)
Lung/anatomy & histology , Magnetic Resonance Imaging/methods , Animals , Guinea Pigs , Helium , Isotopes , Pulmonary Diffusing Capacity , Xenon Isotopes
9.
Magn Reson Med ; 42(4): 729-37, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10502762

ABSTRACT

The transverse relaxation time, T *(2), of hyperpolarized (HP) gas in the lung in vivo is an important parameter for pulse sequence optimization and image contrast. We obtained T *(2) maps of HP (3)He and (129)Xe in guinea pig lungs (n = 17) and in human lungs. Eight different sets of (3)He guinea pig studies were acquired, with variation of slice selection, tidal volume, and oxygen level. For example, for a (3)He tidal volume of 3 cm(3) and no slice selection, the average T *(2) in the trachea was 14.7 ms and 8.0 ms in the intrapulmonary airspaces. The equivalent (129)Xe experiment yielded an average T *(2) of 40.8 ms in the trachea and 18.5 ms in the intrapulmonary airspaces. The average (3)He T *(2) in the human intrapulmonary airspaces was 9.4 ms. The relaxation behavior was predicted by treating the lung as a porous medium, resulting in good agreement between estimated and measured T *(2) values in the intrapulmonary airspaces. Magn Reson Med 42:729-737, 1999.


Subject(s)
Lung/anatomy & histology , Magnetic Resonance Imaging/methods , Animals , Guinea Pigs , Helium , Humans , Isotopes , Male , Middle Aged , Pulmonary Diffusing Capacity , Trachea/anatomy & histology , Xenon Isotopes
10.
J Magn Reson ; 139(2): 225-31, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10423359

ABSTRACT

We have investigated the transfer of polarization from (129)Xe to solute protons in aqueous solutions to determine the feasibility of using hyperpolarized xenon to enhance (1)H sensitivity in aqueous systems at or near room temperatures. Several solutes, each of different molecular weight, were dissolved in deuterium oxide and although large xenon polarizations were created, no significant proton signal enhancement was detected in l-tyrosine, alpha-cyclodextrin, beta-cyclodextrin, apomyoglobin, or myoglobin. Solute-induced enhancement of the (129)Xe spin-lattice relaxation rate was observed and depended on the size and structure of the solute molecule. The significant increase of the apparent spin-lattice relaxation rate of the solution phase (129)Xe by alpha-cyclodextrin and apomyoglobin indicates efficient cross relaxation. The slow relaxation of xenon in beta-cyclodextrin and l-tyrosine indicates weak coupling and inefficient cross relaxation. Despite the apparent cross-relaxation effects, all attempts to detect the proton enhancement directly were unsuccessful. Spin-lattice relaxation rates were also measured for Boltzmann (129)Xe in myoglobin. The cross-relaxation rates were determined from changes in (129)Xe relaxation rates in the alpha-cyclodextrin and myoglobin solutions. These cross-relaxation rates were then used to model (1)H signal gains for a range of (129)Xe to (1)H spin population ratios. These models suggest that in spite of very large (129)Xe polarizations, the (1)H gains will be less than 10% and often substantially smaller. In particular, dramatic (1)H signal enhancements in lung tissue signals are unlikely.


Subject(s)
Magnetic Resonance Spectroscopy , Xenon Isotopes/analysis , Apoproteins/chemistry , Cyclodextrins/chemistry , Magnetic Resonance Spectroscopy/methods , Myoglobin/chemistry , Protons , Solutions/chemistry , Tyrosine/chemistry , Water
11.
Magn Reson Med ; 41(4): 800-8, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10332857

ABSTRACT

Three-dimensional magnetic resonance images of the guinea pig lung were acquired in vivo using hyperpolarized (HP) noble gases and radial projection encoding (PE). Results obtained with 3He (voxel size 17 microl) demonstrated high image quality showing airway structure down to the 5th or 6th generations. Signal-to-noise ratios (SNRs) of 129Xe images (voxel size 40 microl) were lower by about 1 order of magnitude as a consequence of the smaller gyromagnetic ratio, a more rapid relaxation in the gas reservoir, and lower polarization and isotope abundance. Comparison between experimentally obtained SNRs and results from calculations based on a model that accounts for the three-dimensional PE acquisition scheme and the non-equilibrium situation in HP gas imaging yielded excellent agreement for small flip angles. A theoretical examination of the potential resolution in HP gas MR microscopy of the lungs suggests that in vivo visualization of alveolar clusters distal to respiratory bronchioles may be possible.


Subject(s)
Lung/cytology , Magnetic Resonance Imaging/methods , Noble Gases , Animals , Guinea Pigs , Microscopy , Models, Theoretical , Sensitivity and Specificity
12.
Magn Reson Med ; 41(5): 1058-64, 1999 May.
Article in English | MEDLINE | ID: mdl-10332890

ABSTRACT

Hyperpolarized (HP) 129Xe can be dissolved in biologically compatible lipid emulsions while maintaining sufficient polarization for in vivo vascular imaging. For xenon in Intralipid 30%, in vitro spectroscopy at 2 T yielded a chemical shift of 197 +/- 1 ppm with reference to xenon gas, a spin-lattice relaxation time T1 = 25.3 +/- 2.1 sec, and a T2* time constant of 37 +/- 5 msec. Angiograms of the abdominal and pelvic veins in the rat obtained with 129Xe MRI after intravenous injection of HP 129Xe/Intralipid 30% into the tail demonstrated signal-to-noise ratios between 8 and 29. An analysis of the inflow effect on time-of-flight images of two segments of the inferior vena cava yielded additional information. The mean blood flow velocity was 34.7 +/- 1.0 mm/sec between the junction of the caudal veins and the kidneys and 13.3 +/- 0.8 mm/sec at the position of the diaphragm. The mean volume flow rates in these segments were 7.2 +/- 3.4 ml/min and 11.0 +/- 2.8 ml/min, respectively. Intravenous delivery of HP 129Xe dissolved in a carrier may lead to novel biomedical applications of laser-polarized gases.


Subject(s)
Contrast Media , Fat Emulsions, Intravenous , Magnetic Resonance Angiography/methods , Xenon Isotopes , Abdomen/blood supply , Animals , Artifacts , Blood Flow Velocity , Blood Volume , Contrast Media/administration & dosage , Electron Spin Resonance Spectroscopy , Fat Emulsions, Intravenous/administration & dosage , Iliac Vein/anatomy & histology , Injections, Intravenous , Lasers , Magnetic Resonance Spectroscopy , Male , Pelvis/blood supply , Rats , Renal Veins/anatomy & histology , Signal Processing, Computer-Assisted , Veins/anatomy & histology , Vena Cava, Inferior/anatomy & histology
13.
J Magn Reson ; 135(1): 133-43, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9799687

ABSTRACT

The nonequilibrium bulk magnetic moment of hyperpolarized (HP) noble gases generated by optical pumping has unique characteristics. Based on the Bloch equations, a model was developed describing the signal dynamics of HP gases used in magnetic resonance imaging (MRI) of the lung with special consideration to the breathing cycle. Experimental verification included extensive investigations with HP 3He and 129Xe during both inspiration and held breath in live guinea pigs. Radial acquisition was used to investigate the view variations with a temporal resolution of 5 ms. Agreement between theoretical predictions and in vivo results was excellent. Additionally, information about effects from noble gas diffusion and spin-lattice relaxation was obtained. In vivo results for T1 were 28.8 +/- 1.8 s for 3He and 31.3 +/- 1.8 s for 129Xe. Comparison with in vitro data indicated that relaxation in the pulmonary gas space is dominated by dipolar coupling with molecular oxygen. The results provide a quantitative basis for optimizing pulse sequence design in HP gas MRI of the lung.


Subject(s)
Image Enhancement , Lung/anatomy & histology , Magnetic Resonance Imaging , Noble Gases , Animals , Guinea Pigs , Magnetic Resonance Imaging/methods , Magnetics , Models, Theoretical , Reproducibility of Results
14.
Magn Reson Med ; 38(1): 66-71, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9211381

ABSTRACT

The magnetization in hyperpolarized gas (HP) MRI is generated by laser polarization that is independent of the magnet and imaging process. As a consequence, there is no equilibrium magnetization during the image acquisition. The competing processes of gas inflow and depolarization of the spins lead to large changes in signal as one samples k-space. A model is developed of dynamic changes in polarization of hyperpolarized 3He during infusion and in vivo imaging of the lung and verified experimentally in a live guinea pig. Projection encoding is used to measure the view-to-view variation with temporal resolution < 4 ms. Large excitation angles effectively sample the magnetization in the early stages of inflow, highlighting larger airways, while smaller excitation angles produce images of the more distal spaces. The work provides a basis for pulse sequences designed to effectively exploit HP MRI in the lung.


Subject(s)
Helium , Lung/anatomy & histology , Magnetic Resonance Imaging/methods , Animals , Guinea Pigs , Isotopes , Male , Respiration
15.
Magn Reson Med ; 37(6): 809-15, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9178229

ABSTRACT

Using a new method of xenon laser-polarization that permits the generation of liter quantities of hyperpolarized 129Xe gas, the first 129Xe imaging results from the human chest and the first 129Xe spectroscopy results from the human chest and head have been obtained. With polarization levels of approximately 2%, cross-sectional images of the lung gas-spaces with a voxel volume of 0.9 cm3 (signal-to-noise ratio (SNR), 28) were acquired and three dissolved-phase resonances in spectra from the chest were detected. In spectra from the head, one prominent dissolved-phase resonance, presumably from brain parenchyma, was detected. With anticipated improvements in the 129Xe polarization system, pulse sequences, RF coils, and breathing maneuvers, these results suggest the possibility for 129Xe gas-phase imaging of the lungs with a resolution approaching that of current conventional thoracic proton imaging. Moreover, the results suggest the feasibility of dissolved-phase imaging of both the chest and brain with a resolution similar to that obtained with the gas-phase images.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Xenon Isotopes , Adult , Brain/anatomy & histology , Female , Humans , Lung/anatomy & histology , Male
16.
Radiology ; 200(2): 553-8, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8685356

ABSTRACT

Two healthy volunteers who had inhaled approximately 0.75 L of laser-polarized helium-3 gas underwent magnetic resonance imaging at 1.5 T with fast gradient-echo pulse sequences and small flip angles ( < 10 degrees). Thick-section (20 mm) coronal images, time-course data (30 images collected every 1.8 seconds), and thin-section (6 mm) images were acquired. Subjects were able to breathe the gas (12% polarization) without difficulty. Thick-section images were of good quality and had a signal-to-noise ratio (S/N) of 32:1 near the surface coil and 16:1 farther away. The time images showed regional differences, which indicated potential value for quantitation. High-resolution images showed greater detail and a S/N of approximately 6:1.


Subject(s)
Helium , Lung/anatomy & histology , Magnetic Resonance Imaging/methods , Adult , Humans , Image Enhancement/methods , Isotopes , Magnetic Resonance Imaging/instrumentation , Male , Middle Aged
17.
Radiology ; 199(3): 867-70, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8638019

ABSTRACT

The authors imaged the lungs of live guinea pigs with hyperpolarized (HP) helium-3 as a magnetic resonance (MR) signal source. HP He-3 gas produced through spin exchange with rubidium metal vapor was delivered through an MR-compatible, small-animal ventilator. Two- and three-dimensional lung images acquired with ventilation-gated, radial k-space sampling showed complete ventilation of both lungs. All images were of high quality, demonstrating that HP He-3 allows high-signal-intensity MR imaging in living systems.


Subject(s)
Lung/anatomy & histology , Magnetic Resonance Imaging/methods , Animals , Guinea Pigs , Helium , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/statistics & numerical data , Male , Radioisotopes
18.
Phys Rev Lett ; 74(24): 4943-4946, 1995 Jun 12.
Article in English | MEDLINE | ID: mdl-10058638
19.
Nature ; 370(6486): 199-201, 1994 Jul 21.
Article in English | MEDLINE | ID: mdl-8028666

ABSTRACT

As currently implemented, magnetic resonance imaging (MRI) relies on the protons of water molecules in tissue to provide the NMR signal. Protons are, however, notoriously difficult to image in some biological environments of interest, notably the lungs and lipid bilayer membranes such as those in the brain. Here we show that 129Xe gas can be used for high-resolution MRI when the nuclear-spin polarization of the atoms is increased by laser optical pumping and spin exchange. This process produces hyperpolarized 129Xe, in which the magnetization is enhanced by a factor of about 10(5). By introducing hyperpolarized 129Xe into mouse lungs we have obtained images of the lung gas space with a speed and a resolution better than those available from proton MRI or emission tomography. As xenon (a safe general anaesthetic) is rapidly and safely transferred from the lungs to blood and thence to other tissues, where it is concentrated in lipid and protein components, images of the circulatory system, the brain and other vital organs can also be obtained. Because the magnetic behaviour of 129Xe is very sensitive to its environment, and is different from that of 1H2O, MRI using hyperpolarized 129Xe should involve distinct and sensitive mechanisms for tissue contrast.


Subject(s)
Magnetic Resonance Imaging/methods , Xenon Isotopes , Animals , In Vitro Techniques , Lasers , Lung/anatomy & histology , Mice , Water
SELECTION OF CITATIONS
SEARCH DETAIL