Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
World J Diabetes ; 15(6): 1254-1262, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983810

ABSTRACT

BACKGROUND: The FreeStyle Libre flash glucose monitoring (FGM) system entered the Chinese market in 2017 to complement the self-monitoring of blood glucose. Due to its increased usage in clinics, the number of studies investigating its accuracy has increased. However, its accuracy has not been investigated in highland popu-lations in China. AIM: To evaluate measurements recorded using the FreeStyle Libre FGM system compared with capillary blood glucose measured using the enzyme electrode method in patients with type 2 diabetes (T2D) who had migrated within 3 mo from highlands to plains. METHODS: Overall, 68 patients with T2D, selected from those who had recently migrated from highlands to plains (within 3 mo), were hospitalized at the Department of Endocrinology from August to October 2017 and underwent continuous glucose monitoring (CGM) with the FreeStyle Libre FGM system for 14 d. Throughout the study period, fingertip capillary blood glucose was measured daily using the enzyme electrode method (Super GL, China), and blood glucose levels were read from the scanning probe during fasting and 2 h after all three meals. Moreover, the time interval between reading the data from the scanning probe and collecting fingertip capillary blood was controlled to < 5 min. The accuracy of the FGM system was evaluated according to the CGM guidelines. Subsequently, the factors influencing the mean absolute relative difference (MARD) of this system were analyzed by a multiple linear regression method. RESULTS: Pearson's correlation analysis showed that the fingertip and scanned glucose levels were positively correlated (R = 0.86, P = 0.00). The aggregated MARD of scanned glucose was 14.28 ± 13.40%. Parker's error analysis showed that 99.30% of the data pairs were located in areas A and B. According to the probe wear time of the FreeStyle Libre FGM system, MARD1 d and MARD2-14 d were 16.55% and 14.35%, respectively (t = 1.23, P = 0.22). Multiple stepwise regression analysis showed that MARD did not correlate with blood glucose when the largest amplitude of glycemic excursion (LAGE) was < 5.80 mmol/L but negatively correlated with blood glucose when the LAGE was ≥ 5.80 mmol/L. CONCLUSION: The FreeStyle Libre FGM system has good accuracy in patients with T2D who had recently migrated from highlands to plains. This system might be ideal for avoiding the effects of high hematocrit on blood glucose monitoring in populations that recently migrated to plains. MARD is mainly influenced by glucose levels and fluctuations, and the accuracy of the system is higher when the blood glucose fluctuation is small. In case of higher blood glucose level fluctuations, deviation in the scanned glucose levels is the highest at extremely low blood glucose levels.

2.
Macromol Rapid Commun ; : e2400312, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860731

ABSTRACT

Vitrimers, possessing associative covalent adaptable networks, are cross-linked polymers exhibiting malleable (glass-like) feature and recyclable and reprocessable (thermoplastics-like) properties. The dynamic behaviors of vitrimer are dependent on both chain/molecular mobility (glass transition temperature, Tg) and dynamic bond-exchanging reaction rate (topology freezing transition temperature, Tv). This work aims on probing the effect of high Tg on the stress relaxation and physical recyclability of vitrimers, employing a polyimide cross-linked with dynamic ester bonds (Tg: 310 °C) as the example. Due to its high Tg and chain rigidity, the cross-linked polyimide does not exhibit a high extent of stress relaxation behavior at 320 °C (10 °C above its Tg), even though the temperature is much higher than the hypothetical Tv. While raising the processing temperature to 345 °C, the cross-linked polyimide exhibits a stress relaxation time of about 3300 s and physical malleability. Nevertheless, side reactions may occur in the recycling and reprocessing process under the harsh condition (high temperature and high pressure) to alter the thermal properties of the recycled sample. The diffusion control plays a critical role on the topography transition of a vitrimer having a high Tg. The Tg ceiling is noticeable for developments of vitrimers.

3.
Chem Biol Interact ; 398: 111085, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38823539

ABSTRACT

Sepsis-induced acute lung injury (SALI) is the common complication of sepsis, resulting in high incidence and mortality rates. The primary pathogenesis of SALI is the interplay between acute inflammation and endothelial barrier damage. Studies have shown that kaempferol (KPF) has anti-sepsis properties. Sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway's significance in acute lung damage and S1P receptor 1 (S1PR1) agonists potential in myosin light chain 2 (MLC2) phosphorylation are documented. Whether KPF can regulate the SphK1/S1P/S1PR1/MLC2 signaling pathway to protect the lung endothelial barrier remains unclear. This study investigates the KPF's therapeutic effects and molecular mechanisms in repairing endothelial cell barrier damage in both LPS-induced sepsis mice and human umbilical vein endothelial cells (HUVECs). KPF significantly reduced lung tissue damage and showed anti-inflammatory effects by decreasing IL-6 and TNF-α synthesis in the sepsis mice model. Further, KPF administration can reduce the high permeability of the LPS-induced endothelial cell barrier and alleviate lung endothelial cell barrier injury. Mechanistic studies showed that KPF pretreatment can suppress MLC2 hyperphosphorylation and decrease SphK1, S1P, and S1PR1 levels. The SphK1/S1P/S1PR1/MLC2 signaling pathway controls the downstream proteins linked to endothelial barrier damage, and the Western blot (WB) showed that KPF raised the protein levels. These proteins include zonula occludens (ZO)-1, vascular endothelial (VE)-cadherin and Occludin. The present work revealed that in mice exhibiting sepsis triggered by LPS, KPF strengthened the endothelial barrier and reduced the inflammatory response. The SphK1/S1P/S1PR1/MLC2 pathway's modulation is the mechanism underlying this impact.


Subject(s)
Acute Lung Injury , Cardiac Myosins , Human Umbilical Vein Endothelial Cells , Kaempferols , Lung , Lysophospholipids , Mice, Inbred C57BL , Myosin Light Chains , Sepsis , Signal Transduction , Sphingosine , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Humans , Myosin Light Chains/metabolism , Signal Transduction/drug effects , Mice , Lysophospholipids/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine/pharmacology , Male , Human Umbilical Vein Endothelial Cells/metabolism , Cardiac Myosins/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Lipopolysaccharides , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Receptors, Lysosphingolipid/metabolism , Interleukin-6/metabolism , Sphingosine-1-Phosphate Receptors/metabolism
4.
J Hazard Mater ; 474: 134816, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850928

ABSTRACT

Polyethylene microplastics (PE MPs) are the main MPs in agricultural soils and undergo oxidation upon environmental exposure. However, the influence of MP oxidation on phytotoxicity (especially for crop fruit) is still limited. This study aimed to explore the effect of PE MP oxidation on crop toxicity. Herein, a combination of plant phenotyping, metabolomic, and transcriptomic approaches was used to evaluate the effects of low-oxidation PE (LOPE) and high-oxidation PE (HOPE) on wheat growth, grain quality, and related molecular mechanisms using pot experiments. The results showed that HOPE induced a stronger inhibition of wheat growth and reduction in protein content and mineral elements than LOPE. This was accompanied by root ultrastructural damage and downregulation of carbohydrate metabolism, translation, nutrient reservoir activity, and metal ion binding gene expression. Compared with HOPE, LOPE activated a stronger plant defense response by reducing the starch content by 22.87 %, increasing soluble sugar content by 44.93 %, and upregulating antioxidant enzyme genes and crucial metabolic pathways (e.g., starch and sucrose, linoleic acid, and phenylalanine metabolism). The presence of PE MPs in the environment exacerbates crop growth inhibition and fruit quality deterioration, highlighting the need to consider the environmental and food safety implications of MPs in agricultural soils.


Subject(s)
Microplastics , Oxidation-Reduction , Polyethylene , Triticum , Triticum/drug effects , Triticum/metabolism , Triticum/growth & development , Polyethylene/toxicity , Microplastics/toxicity , Soil Pollutants/toxicity , Edible Grain/metabolism , Edible Grain/drug effects , Edible Grain/growth & development , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Gene Expression Regulation, Plant/drug effects
5.
J Biol Chem ; : 107483, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897569

ABSTRACT

The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid delayed rectifier K+ current (IKur) in human cells, plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. We previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) induces endocytic degradation of cell-surface Kv1.5 channels, and a point mutation removing the phosphorylation site, T15A, in the N terminus of Kv1.5 abolished the PMA-effect. In the present study, using mutagenesis, patch clamp recording, Western blot analysis and immunocytochemical staining, we demonstrate that ubiquitination is involved in PMA-mediated degradation of mature Kv1.5 channels. Since the expression of Kv1.4 channel is unaffected by PMA treatment, we swapped the N- and/or C-termini between Kv1.5 and Kv1.4. We found that N-terminus alone did not, but both N- and C-termini of Kv1.5 did confer PMA sensitivity to mature Kv1.4 channels, suggesting the involvement of Kv1.5 C-terminus in the channel ubiquitination. Removal of each of the potential ubiquitination residue Lysine at position 536, 565, and 591 by Arginine substitution (K536R, K565R, and K591R) had little effect, but removal of all three Lysine residues with Arginine substitution (3K-R) partially reduced PMA-mediated Kv1.5 degradation. Furthermore, removing the cysteine residue at position 604 by Serine substitution (C604S) drastically reduced PMA-induced channel degradation. Removal of the three Lysines and Cys604 with a quadruple mutation (3K-R/C604S) or a truncation mutation (Δ536) completely abolished the PKC activation-mediated degradation of Kv1.5 channels. These results provide mechanistic insight into PKC activation-mediated Kv1.5 degradation.

6.
Curr Med Sci ; 44(3): 633-641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789820

ABSTRACT

OBJECTIVE: The latest perspective suggests that elevated levels of inflammation and cytokines are implicated in atonic postpartum hemorrhage. Lipopolysaccharide (LPS) has been widely used to induce inflammation in animal models. Therefore, this study aimed to induce uterine inflammation using LPS to investigate whether local inflammation triggers dysfunction and atrophy in the myometrium, as well as the potential underlying molecular mechanisms involved. METHODS: In vivo, an animal model was established by intraperitoneal injection of 300 µg/ kg LPS in rats on gestational day 21. Hematoxylin-eosin (H&E) staining and Masson staining were employed to determine morphological changes in the rat uterine smooth muscle. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokines. Immunohistochemistry, tissue fluorescence, and Western blotting were conducted to assess the expression levels of the uterine contraction-related proteins Toll-like receptor 4 (TLR4) and the nuclear factor kappa-B (NF-κB) signaling pathway. In vitro, human uterine smooth muscle cells (HUtSMCs) were exposed to 2 µg/mL LPS to further elucidate the involvement of the TLR4/NF-κB signaling pathway in LPS-mediated inflammation. RESULTS: In this study, LPS induced uterine myometrial dysfunction in rats, leading to a disorganized arrangement, a significant increase in collagen fiber deposition, and widespread infiltration of inflammatory cells. In both in vivo animal models and in vitro HUtSMCs, LPS elevated IL-6, IL-1ß, and TNF-α levels while concurrently suppressing the expression of connexin 43 (Cx43) and oxytocin receptor (OXTR). Mechanistically, the LPS-treated group exhibited TLR4 activation, and the phosphorylation levels of p65 and IκBα were notably increased. CONCLUSION: LPS triggered the TLR4/NF-κB signaling pathway, inducing an inflammatory response in the myometrium and leading to uterine myometrial dysfunction and uterine atony.


Subject(s)
Inflammation , Lipopolysaccharides , Myometrium , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Female , Animals , Myometrium/pathology , Myometrium/metabolism , Rats , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Inflammation/pathology , Inflammation/metabolism , Inflammation/chemically induced , NF-kappa B/metabolism , Humans , Pregnancy , Rats, Sprague-Dawley , Cytokines/metabolism , Uterine Contraction/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Disease Models, Animal , Uterus/pathology , Uterus/metabolism
7.
J Phys Chem Lett ; 15(22): 5923-5934, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38809779

ABSTRACT

The implementation of energy-saving policies has stimulated intensive interest in exploring self-powered optoelectronic devices. The 2D p-n homojunction exhibits effective generation and separation of carriers excited by light, realizing lower power consumption and higher performance photodetectors. Here, a self-powered photodetector with high performance is fabricated based on an F4-TCNQ localized molecular-doped lateral InSe homojunction. Compared with the intrinsic InSe photodetector, the switching light ratio (Ilight/Idark) of the p-n homojunction device can be enhanced by 2.2 × 104, and the temporal response is also dramatically improved to 24/30 µs. Benefiting from the built-in electric field, due to the formation of an InSe p-n homojunction after partial doping of F4-TCNQ on InSe, the device possesses a high responsivity (R) of 93.21 mA/W, with a specific detectivity (D*) of 1.14 × 1011 Jones. These results suggest a promising approach to get a lateral InSe p-n homojunction and reveal the potential application of the device for next generation low-consumption photodetectors.

8.
Lipids Health Dis ; 23(1): 158, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802797

ABSTRACT

BACKGROUND: Recent interest in the Non-High Density to High Density Lipoprotein Cholesterol ratio (NHHR) has emerged due to its potential role in metabolic disorders. However, the connection between NHHR and the development of kidney stones still lacks clarity. The primary goal of this research is to explore how NHHR correlates with kidney stone incidence. METHODS: An analysis was conducted on the data collected by the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2018, focusing on adults over 20 years diagnosed with kidney stones and those with available NHHR values. Employing weighted logistic regression and Restricted Cubic Spline (RCS) models, NHHR levels' correlation with kidney stone risk was examined. Extensive subgroup analyses were conducted for enhanced reliability of the findings. RESULTS: The findings indicate a heightened kidney stone risk for those at the highest NHHR levels relative to those at the lowest (reference group). A notable non-linear correlation of NHHR with kidney stone incidence has been observed, with a significant P-value (< 0.001), consistent across various subgroups. CONCLUSION: A clear link exists between high NHHR levels and increased kidney stone risk in the American adult population. This study highlights NHHR's significance as a potential indicator in kidney stone formation.


Subject(s)
Kidney Calculi , Nutrition Surveys , Humans , Kidney Calculi/blood , Kidney Calculi/epidemiology , Adult , Male , Female , Middle Aged , Cross-Sectional Studies , Risk Factors , Cholesterol, HDL/blood , United States/epidemiology , Incidence , Aged , Logistic Models
9.
J Pain Res ; 17: 1693-1707, 2024.
Article in English | MEDLINE | ID: mdl-38746535

ABSTRACT

Background: Cerebral blood flow and vascular structures serve as the fundamental components of brain metabolism and circulation. Acupuncture, an alternative and complementary medical approach, has demonstrated efficacy in treating cerebral ischemic stroke (CIS). Nevertheless, the mechanisms underlying the impact of acupuncture on vascular smooth muscle cell (VSMC) function remain uncertain. The objective of this systematic review and meta-analysis is to assess the alterations in VSMC function following acupuncture stimulation in CIS models. Methods: The databases PubMed, Web of Science, SCOPUS, and EMBASE were queried until November 2022 using a predetermined search strategy. The FORMAT BY SYRCLE guidelines were adhered to, and the risk of bias of the included studies was evaluated using the Risk of Bias tool developed by the Systematic Review Centre for Laboratory Animal Experimentation. The random-effects model was employed to estimate the standardized mean difference (SMD). Results: Eighteen articles are included in this review. Acupuncture showed significant positive effects on the region cerebral blood flow (SMD=8.15 [95% CI, 4.52 to 11.78]) and neurological deficiency (SMD=-3.75 [95% CI, -5.54 to -1.97]). Descriptive analysis showed a probable mechanism of acupuncture stimulation in CIS rats related to VSMC function. Limitations and publication bias were presented in the studies. Conclusion: In this systematic review and meta-analysis, our findings indicate that acupuncture stimulation has the potential to improve regional cerebral blood flow and alleviate neurological deficits, possibly by regulating VSMC function. However, it is important to exercise caution when interpreting these results due to the limitations of animal experimental design and methodological quality.

10.
Chin J Integr Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816638

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of Chinese medicine (CM) in the treatment of coronavirus disease 2019 (COVID-19) in China. METHODS: A multi-center retrospective cohort study was carried out, with cumulative CM treatment period of ⩾3 days during hospitalization as exposure. Data came from consecutive inpatients from December 19, 2019 to May 16, 2020 in 4 medical centers in Wuhan, China. After data extraction, verification and cleaning, confounding factors were adjusted by inverse probability of treatment weighting (IPTW), and the Cox proportional hazards regression model was used for statistical analysis. RESULTS: A total of 2,272 COVID-19 patients were included. There were 1,684 patients in the CM group and 588 patients in the control group. Compared with the control group, the hazard ratio (HR) for the deterioration rate in the CM group was 0.52 [95% confidence interval (CI): 0.41 to 0.64, P<0.001]. The results were consistent across patients of varying severity at admission, and the robustness of the results were confirmed by 3 sensitivity analyses. In addition, the HR for all-cause mortality in the CM group was 0.29 (95% CI: 0.19 to 0.44, P<0.001). Regarding of safety, the proportion of patients with abnormal liver function or renal function in the CM group was smaller. CONCLUSION: This real-world study indicates that the combination of a full-course CM therapy on the basic conventional treatment, may safely reduce the deterioration rate and all-cause mortality of COVID-19 patients. This result can provide the new evidence to support the current treatment of COVID-19. Additional prospective clinical trial is needed to evaluate the efficacy and safety of specific CM interventions. (Registration No. ChiCTR2200062917).

11.
World J Urol ; 42(1): 274, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689003

ABSTRACT

BACKGROUND: Kidney stones exhibit a robust correlation with cardiovascular disease (CVD). The objective of this research is to investigate the correlation between kidney stones and Life's Essential 8 (LE8), a newly updated assessment of cardiovascular health (CVH), among adults in the United States. METHODS: In this study, which analyzed data from the 2007-2018 National Health and Nutrition Examination Survey, we employed LE8 scores (ranging from 0 to 100) as the independent variable, classifying them into low, moderate, and high CVH categories. The research examined the relationship between LE8 scores and kidney stones by using multivariate logistic regression and restricted cubic spline models, with kidney stones as the dependent variable. RESULTS: Out of the 14,117 participants in this research, the weighted mean LE8 score was 69.70 ± 0.27. After accounting for confounding factors, there was an inverse association between higher LE8 scores and the likelihood of developing kidney stones (OR of 0.81 per 10-point increase, with a 95% confidence interval of 0.77-0.85), demonstrating a non-linear dose-response pattern. Similar patterns were observed for health behaviors, health factor scores, and kidney stones. Stratified analyses demonstrated a stable negative correlation between LE8 scores and kidney stones across different subgroups. CONCLUSION: LE8 and its subscale scores exhibited a robust and inverse correlation with the occurrence of kidney stones. Encouraging adherence to optimal CVH levels has the potential to serve as an effective strategy in preventing and minimizing the occurrence of kidney stones.


Subject(s)
Kidney Calculi , Humans , Kidney Calculi/epidemiology , Male , Female , Middle Aged , Adult , Nutrition Surveys , United States/epidemiology , Aged , Cardiovascular Diseases/epidemiology , Cross-Sectional Studies
12.
Nanomaterials (Basel) ; 14(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38607179

ABSTRACT

Rheumatoid arthritis (RA) severely affects patients' quality of life and is commonly treated with glucocorticosteroids injections, like dexamethasone, which may have side effects. This study aimed to create a novel low dose of twin-drug hydrogel containing dexamethasone and diclofenac and explore its potential as a drug delivery system for an enhanced anti-inflammatory effect. Its characterization involved rheology, transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, the hydrogel demonstrated thixotropic properties. The hydrogel exhibited no cytotoxicity against RAW 264.7 macrophages. Furthermore, the hydrogel demonstrated a significant anti-inflammatory efficacy by effectively downregulating the levels of NO, TNF-α, and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The co-delivery approach, when intra-articularly injected in adjuvant-induced arthritis (AIA) rats, significantly alleviated chronic inflammation leading to reduced synovitis, delayed bone erosion onset, and the downregulation of inflammatory cytokines. The biocompatibility and adverse effect evaluation indicated good biological safety. Furthermore, the hydrogel demonstrated efficacy in reducing NF-κB nuclear translocation in LPS-induced RAW 264.7 macrophages and inhibited p-NF-kB, COX-2, and iNOS expression both in RAW 264.7 macrophages and the joints of AIA rats. In conclusion, the findings indicate that the hydrogel possesses potent anti-inflammatory activity, which effectively addresses the limitations associated with free forms. It presents a promising therapeutic strategy for the management of RA.

13.
Nano Lett ; 24(18): 5453-5459, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38682680

ABSTRACT

Voltage-controlled oscillators, serving as fundamental components in semiconductor chips, find extensive applications in diverse modules such as phase-locked loops, clock generators, and frequency synthesizers within high-frequency integrated circuits. This study marks the first implementation of superconducting Josephson probe microscopy for near-field microwave detection on multiple voltage-controlled oscillators. Focusing on spectrum tracking, various phenomena, such as stray spectra and frequency drifts, were found under nonsteady operating states. Parasitic electromagnetic fields, originating from power supply lines and frequency divider circuits, were identified as sources of interference between units. The investigation further determined optimal working states by analyzing features of the microwave distributions. Our research not only provides insights into the optimization of circuit design and performance enhancement in oscillators but also emphasizes the significance of nondestructive near-field microwave microscopy as a pivotal tool in characterizing integrated millimeter-wave chips.

14.
Mol Ther ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582962

ABSTRACT

Cellular senescence associates with pathological aging and tissue dysfunctions. Studies utilizing mouse models for cell lineage tracings have emphasized the importance of senescence heterogeneity in different organs and cell types. Here, we constructed a p21- (Akaluc - tdTomato - Diphtheria Toxin Receptor [DTR]) (ATD) mouse model to specifically study the undefined mechanism for p21-expressing senescent cells in the aged and liver injury animals. The successful expressions of these genes enabled in vitro flow cytometric sorting, in vivo tracing, and elimination of p21-expressing senescent cells. During the natural aging process, p21-expressing cells were found in various tissues of p21-ATD mice. Eliminating p21-expressing cells in the aged p21-ATD mice recovered their multiple biological functions. p21-ATD/Fah-/- mice, bred from p21-ATD mice and fumarylacetoacetate hydrolase (Fah)-/- mice of liver injury, showed that the majority of their senescent hepatocytes were the phenotype of p21+ rather than p16+. Furthermore, eliminating the p21-expressing hepatocytes significantly promoted the engraftment of grafted hepatocytes and facilitated liver repopulation, resulting in significant recovery from liver injury. Our p21-ATD mouse model serves as an optimal model for studying the pattern and function of p21-expressing senescent cells under the physical and pathological conditions during aging.

15.
ACS Appl Mater Interfaces ; 16(14): 17937-17945, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38530251

ABSTRACT

Fiber-based supercapacitors are the potential power sources in the field of wearable electronics and energy storage textiles due to their unique advantages of electrochemical properties and mechanical flexibility, but achieving high energy density and practical energy supply still presents some challenges. In this study, we reported an approach of microfluidic assisted wet-spinning to fabricate SnO2 quantum dots encapsulated polyaniline/graphene hybrid fibers (SnO2 QDs@PGF) by incorporating uniformly polyaniline into graphene fibers and covalently bridging SnO2 quantum dots. The assembled SnO2 QDs@PGF fiber-typed flexible supercapacitors exhibit an ultralarge specific areal capacitance of 925 mF cm-2 in PVA/H2SO4, superior rate capabilities, and capacitance retention of 88% after 8000 cycles, indicating that the SnO2 QDs@PGF possess near-ideal capacitance properties, efficient ion transfer rate, and good cycling stability. In the EMITFSI/PVDF-HFP electrolyte system, SnO2 QDs@PGF realize a wide operating potential window of 2.5 V, a specific areal capacitance of 678.4 mF cm-2, and an energy density of 147.2 µWh cm-2 at 500 µW cm-2, which can be utilized to power an alarm clock, an electronic timer, and a desk lamp with a requirement of a 3 V battery. The exceptional performance of the SnO2 QDs@PGF can be attributed to the molecular-level homogeneous composite of granular polyaniline and graphene nanosheets and the interfacial C-O-Sn covalent coupling strategy employed between SnO2 QDs and PGF. These avenues not only effectively prevent the undesirable restacking of graphene nanosheets but also increase the interlayer electroactive sites, ordered ion diffusion channels, and strong interfacial charge transfer.

16.
J Hepatocell Carcinoma ; 11: 565-580, 2024.
Article in English | MEDLINE | ID: mdl-38525157

ABSTRACT

Background/Aims: Plumbagin (PL) has been shown to effe ctively inhibit autophagy, suppressing invasion and migration of hepatocellular carcinoma (HCC) cells. However, the specific mechanism remains unclear. This study aimed to investigate the effect of PL on tumor growth factor (TGF)-ß-induced epithelial-mesenchymal transition (EMT) in HCC. Methods: Huh-7 cells were cultured, and in vivo models of EMT and HCC-associated lung metastasis were developed through tail vein and in situ injections of tumor cells. In vivo imaging and hematoxylin and eosin staining were used to evaluate HCC modeling and lung metastasis. After PL intervention, the expression levels of Snail, vimentin, E-cadherin, and N-cadherin in the liver were evaluated through immunohistochemistry and Western blot. An in vitro TGF-ß-induced cell EMT model was used to detect Snail, vimentin, E-cadherin, and N-cadherin mRNA levels through a polymerase chain reaction. Their protein levels were detected by immunofluorescence staining and Western blot. Results: In vivo experiments demonstrated that PL significantly reduced the expression of Snail, vimentin, and N-cadherin, while increasing the expression of E-cadherin at the protein levels, effectively inhibiting HCC and lung metastasis. In vitro experiments confirmed that PL up-regulated epithelial cell markers, down-regulated mesenchymal cell markers, and inhibited EMT levels in HCC cells. Conclusion: PL inhibits Snail expression, up-regulates E-cadherin expression, and down-regulates N-cadherin and vimentin expression, preventing EMT in HCC cells and reducing lung metastasis.

17.
Plant Foods Hum Nutr ; 79(1): 209-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340238

ABSTRACT

The active ingredient group is a prominent feature reflecting the inherent characteristics of plant-based functional foods. Chinese hawthorn leaf (CHL), a tea substitute possessing intrinsic nutritional properties in anti-hyperlipidemia, was first found to be adulterated with Malus doumeri leaf (MDL) owing to similar commercial labels. In this context, the above-mentioned two contrasting species were explored through phytochemical profiling and activity assessment. The amelioration effect of CHL on free fatty acids-elicited lipid deposition in HepG2 cells was significantly better than that of MDL. Molecular networking-based metabolic profiles identified 68 and 67 components in CHL and MDL, with 33 shared components. Extreme gradient boosting (XGBoost) algorithm with outstanding performance was selected to screen candidate components contributing to hypolipidemic activity, and the output was later interpreted by Shapley additive explanations (SHAP) method. Twelve and eight components were separately screened as hyperlipidemic inhibitors in CHL and MDL, while only four constituents were shared. The bioactivity evaluation of selected ingredients and combinations further confirmed their anti-hyperlipidemia capacity. These findings emphasized the feasibility of filtering bioactivity-related compounds using interpretable machine learning approaches and illustrated that related species may contain different hypolipidemic contributors, even if shared constituents existed.


Subject(s)
Crataegus , Malus , Functional Food , Plant Leaves , China
19.
Article in English | MEDLINE | ID: mdl-38381317

ABSTRACT

Afatinib (AT), an FDA-approved aniline-quinazoline derivative, is a first-line treatment for metastatic non-small cell lung cancer (NSCLC). Combining it with cetuximab (CX), a chimeric human-murine derivative immunoglobulin-G1 monoclonal antibody (mAb) targeting the extracellular domain of epidermal growth factor receptor (EGFR), has shown significant improvements in median progression-free survival. Previously, we developed cetuximab-conjugated immunoliposomes loaded with afatinib (AT-MLP) and demonstrated their efficacy against NSCLC cells (A549 and H1975). In this study, we aimed to explore the potential of pulmonary delivery to mitigate adverse effects associated with oral administration and intravenous injection. We formulated AT-MLP dry powders (AT-MLP-DPI) via freeze drying using tert-butanol and mannitol as cryoprotectants in the hydration medium. The physicochemical and aerodynamic properties of dry powders were well analyzed firstly. In vitro cellular uptake and cytotoxicity study revealed concentration- and time-dependent cellular uptake behavior and antitumor efficacy of AT-MLP-DPI, while Transwell assay demonstrated the superior inhibitory effects on NSCLC cell invasion and migration. Furthermore, in vivo pharmacokinetic study showed that pulmonary delivery of AT-MLP-DPI significantly increased bioavailability, prolonged blood circulation time, and exhibited higher lung concentrations compared to alternative administration routes and formulations. The in vivo antitumor efficacy study carried on tumor-bearing nude mice indicated that inhaled AT-MLP-DPI effectively suppressed lung tumor growth.

20.
J Vis Exp ; (203)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38314815

ABSTRACT

Hepatectomy is widely regarded as the primary treatment for hepatic malignancies; yet, postoperative liver failure remains a major cause of perioperative mortality, severely impacting patient outcomes. In a robust hepatic environment, the future liver remnant (FLR) must exceed 25%, and in cases of cirrhosis, this requirement increases to over 40%. The inadequacy of FLR is currently a major obstacle in the progression of hepatic surgery. Traditional methods to enhance FLR hypertrophy mainly focus on portal vein embolization (PVE), but its effectiveness is considerably limited. In recent years, there have been numerous reports on a novel biphasic hepatectomy method involving hepatic partitioning and portal vein ligation, known as associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). ALPPS surpasses PVE in efficiently and considerably inducing FLR hypertrophy. However, the detailed mechanisms driving ALPPS-facilitated hepatic regeneration are not fully understood. Thus, replicating ALPPS in animal models is crucial to thoroughly investigate the molecular mechanisms of hepatic regeneration, offering valuable theoretical and practical insights.


Subject(s)
Hepatectomy , Liver Neoplasms , Animals , Mice , Humans , Hepatectomy/methods , Portal Vein/surgery , Microscopy , Liver Regeneration , Treatment Outcome , Liver/pathology , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Ligation , Disease Models, Animal , Hypertrophy/pathology , Hypertrophy/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...