Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Redox Biol ; 15: 452-466, 2018 05.
Article in English | MEDLINE | ID: mdl-29413958

ABSTRACT

Bacterial dormancy is a major impediment to the eradication of tuberculosis (TB), because currently used drugs primarily target actively replicating bacteria. Therefore, decoding of the critical survival pathways in dormant tubercle bacilli is a research priority to formulate new approaches for killing these bacteria. Employing a network-based gene expression analysis approach, we demonstrate that redox active vitamin C (vit C) triggers a multifaceted and robust adaptation response in Mycobacterium tuberculosis (Mtb) involving ~ 67% of the genome. Vit C-adapted bacteria display well-described features of dormancy, including growth stasis and progression to a viable but non-culturable (VBNC) state, loss of acid-fastness and reduction in length, dissipation of reductive stress through triglyceride (TAG) accumulation, protective response to oxidative stress, and tolerance to first line TB drugs. VBNC bacteria are reactivatable upon removal of vit C and they recover drug susceptibility properties. Vit C synergizes with pyrazinamide, a unique TB drug with sterilizing activity, to kill dormant and replicating bacteria, negating any tolerance to rifampicin and isoniazid in combination treatment in both in-vitro and intracellular infection models. Finally, the vit C multi-stress redox models described here also offer a unique opportunity for concurrent screening of compounds/combinations active against heterogeneous subpopulations of Mtb. These findings suggest a novel strategy of vit C adjunctive therapy by modulating bacterial physiology for enhanced efficacy of combination chemotherapy with existing drugs, and also possible synergies to guide new therapeutic combinations towards accelerating TB treatment.


Subject(s)
Ascorbic Acid/administration & dosage , Isoniazid/administration & dosage , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy , Antitubercular Agents/administration & dosage , Drug Combinations , Gene Expression Regulation, Bacterial/drug effects , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/pathogenicity , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Tuberculosis/genetics , Tuberculosis/microbiology
2.
Sci Rep ; 2: 297, 2012.
Article in English | MEDLINE | ID: mdl-22389766

ABSTRACT

The organization of genomic sequences is dynamic and undergoes change during the process of evolution. Many of the variations arise spontaneously and the observed genomic changes can either be distributed uniformly throughout the genome or be preferentially localized to some regions (hot spots) compared to others. Conversely cold spots may tend to accumulate very few variations or none at all. In order to identify such regions statistically, we have developed a method based on Shewhart Control Chart. The method was used for identification of hot and cold spots of single-nucleotide variations (SNVs) in Mycobacterium tuberculosis genomes. The predictions have been validated by sequencing some of these regions derived from clinical isolates. This method can be used for analysis of other genome sequences particularly infectious microbes.


Subject(s)
Cold Temperature , Genome, Bacterial , Hot Temperature , Mycobacterium tuberculosis/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL