Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Article in English | MEDLINE | ID: mdl-31108844

ABSTRACT

Victoria's (Australia) Environment Protection Authority (EPA), the state's environmental regulator, has recognized the need to develop an Environmental Health Tracking System (EHTS) to better understand environmental health relationships. To facilitate the process of developing an EHTS; a linkage-based conceptual framework was developed to link routinely collected environmental and health data to better understand environmental health relationships. This involved researching and drawing on knowledge from previous similar projects. While several conceptual frameworks have been used to organize data to support the development of an environmental health tracking system, Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) was identified as the most broadly applied conceptual framework. Exposure and effects are two important components of DPSEEA, and currently, exposure data are not available for the EHTS. Therefore, DPSEEA was modified to the Driving Force-Pressure-Environmental Condition-Health Impact-Action (DPEHA) conceptual framework for the proposed Victorian EHTS as there is relevant data available for tracking. The potential application of DPEHA for environmental health tracking was demonstrated through case studies. DPEHA will be a useful tool to support the implementation of Victoria's environmental health tracking system for providing timely and scientific evidence for EPA and other decision makers in developing and evaluating policies for protecting public health and the environment in Victoria.


Subject(s)
Environmental Health/organization & administration , Public Health/methods , Environmental Exposure , Environmental Pollution , Humans , Public Health Administration , Risk Assessment , Victoria
2.
Environ Pollut ; 250: 386-396, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31022644

ABSTRACT

This technique for setting guideline values differs from that currently used by regulatory agencies throughout the world. Data for benzene were evaluated from epidemiological studies on human populations (29 studies). Exposure durations were evaluated in terms of Long Term Exposure (LTE) and Lifetime Exposure. All data was reported as Lowest Observed Adverse Effect Levels (LOAEL) and converted into exposure doses using Average Daily Dose (ADD) and Lifetime Average Daily Dose (LADD). These values were plotted as a Toxicant Sensitivity Distribution (TSD) which was the cumulative probability of LOAEL-ADD and LOAEL-LADD. From the TSD plots, linear regression equations gave correlation coefficients (R2) ranging from 0.69 to 0.97 indicating normal distributions. Guideline Values (GVs) for LTE (8hr/day) and Lifetime (24hr/70yrs) exposure to benzene were calculated using data from human epidemiological studies as 5% level of cumulative probability (CP) of LOAEL-ADD and LOAEL-LADD from the cumulative probability distributions (CPD). The derived guideline values from the human epidemiological studies were 92 µg/kg/day for LTE and 3.4 µg/kg/day for lifetime exposure. GV for LTE is appropriate for occupational exposure and GV derived for lifetime exposure appropriate for the general population. The guideline value for occupational exposure limit was below all the guideline values developed by regulatory agencies. But the general population guideline is within the range of values formulated by European Union, ATSDR, EPAQS, USEPA and OEHHA for air quality for the general population. This is an alternative method which eliminates the application of safety factors and other sources of errors in deriving guideline values for benzene.


Subject(s)
Benzene/analysis , Hazardous Substances/analysis , Occupational Exposure/standards , Air Pollution , Benzene/standards , Benzene/toxicity , Hazardous Substances/standards , Hazardous Substances/toxicity , Humans , Risk Assessment
3.
Environ Pollut ; 216: 738-745, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27400904

ABSTRACT

The levels of nitrate in 52 drinking water wells in rural Central Java, Indonesia were evaluated in April 2014, and the results were used for a health risk assessment for the local populations by using probabilistic techniques. The concentrations of nitrate in drinking water had a range of 0.01-84 mg/L, a mean of 20 mg/L and a medium of 14 mg/L. Only two of the 52 samples exceeded the WHO guideline values of 50 mg/L for infant methaemoglobinaemia. The hazard quotient values as evaluated against the WHO guideline value at the 50 and 95 percentile points were HQ50 at 0.42 and HQ95 at 1.2, respectively. These indicated a low risk of infant methaemoglobinaemia for the whole population, but some risk for the sensitive portion of the population. The HQ50 and HQ95 values based on WHO acceptable daily intake dose for adult male and female were 0.35 and 1.0, respectively, indicating a generally a low level of risk. A risk characterisation linking birth defects to nitrate levels in water consumed during the first three months of pregnancy resulted in a HQ50/50 values of 1.5 and a HQ95/5 value of 65. These HQ values indicated an elevated risk for birth defects, in particular for the more sensitive population. A sanitation improvement program in the study area had a positive effect in reducing nitrate levels in wells and the corresponding risk for public health. For example, the birth defect HQ50/50 values for a subset of wells surveyed in both 2014 and 2015 was reduced from 1.1 to 0.71.


Subject(s)
Drinking Water/chemistry , Nitrates/toxicity , Water Pollutants, Chemical/toxicity , Abnormalities, Drug-Induced , Adult , Environmental Monitoring , Female , Humans , Indonesia , Infant , Male , Nitrates/analysis , Pregnancy , Public Health , Risk Assessment , Rural Population , Water Pollutants, Chemical/analysis , Water Supply , World Health Organization
4.
Int J Environ Res Public Health ; 12(1): 595-610, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25588154

ABSTRACT

The health risk resulting from benzene exposure in petroleum refineries was calculated using data from the scientific literature from various countries throughout the world. The exposure data was collated into four scenarios from petroleum refinery environments and plotted as cumulative probability distributions (CPD) plots. Health risk was evaluated for each scenario using the Hazard Quotient (HQ) at 50% (CEXP50) and 95% (CEXP95) exposure levels. Benzene levels were estimated to pose a significant risk with HQ50 > 1 and HQ95 > 1 for workers exposed to benzene as base estimates for petroleum refinery workers (Scenario 1), petroleum refinery workers evaluated with personal samplers in Bulgarian refineries (Scenario 2B) and evaluated using air inside petroleum refineries in Bulgarian refineries (Scenario 3B). HQ50 < 1 were calculated for petroleum refinery workers with personal samplers in Italian refineries (Scenario 2A), air inside petroleum refineries (Scenario 3A) and air outside petroleum refineries (Scenario 4) in India and Taiwan indicating little possible adverse health effects. Also, HQ95 was < 1 for Scenario 4 however potential risk was evaluated for Scenarios 2A and 3A with HQ95 > 1. The excess Cancer risk (CR) for lifetime exposure to benzene for all the scenarios was evaluated using the Slope Factor and Overall Risk Probability (ORP) methods. The result suggests a potential cancer risk for exposure to benzene in all the scenarios. However, there is a higher cancer risk at 95% (CEXP95) for petroleum refinery workers (2B) with a CR of 48,000 per 106 and exposure to benzene in air inside petroleum refineries (3B) with a CR of 28,000 per 106.


Subject(s)
Benzene/analysis , Health Status Indicators , Occupational Exposure , Oil and Gas Industry , Petroleum Pollution/analysis , Environmental Monitoring , Humans
5.
Toxicol Rep ; 2: 917-927, 2015.
Article in English | MEDLINE | ID: mdl-28962430

ABSTRACT

Health risk characterization of exposure to benzene in service stations and petroleum refineries has been carried out in previous studies using guideline values set by various agencies. In this work, health risk was characterized with the exposure data as cumulative probability distribution (CPD) plots but using human epidemiological data. This was achieved by using lowest observable adverse effects levels (LOAEL) data plotted as cumulative probability lowest effects distribution (CPLED). The health risk due to benzene was characterized by using probabilistic methods of hazard quotient (HQ50/50 and HQ95/5), Monte-Carlo simulation (MCS) and overall risk probability (ORP). CPD relationships of adverse health effects relationships and exposure data were in terms of average daily dose (ADD) and lifetime average daily dose (LADD) for benzene. For service station environments HQ50/50 and HQ95/5 were in a range of 0.000071-0.055 and 0.0049-21, respectively. On the other hand, the risk estimated for petroleum refinery environments suggests higher risk with HQ50/50 and HQ95/5 values ranging from 0.0012 to 77 and 0.17 to 560, respectively. The results of Monte-Carlo risk probability (MRP) and ORP indicated that workers in petroleum refineries (MRP of 2.9-56% and ORP of 4.6-52% of the affected population) were at a higher risk of adverse health effects from exposure to benzene as compared to exposure to benzene in service station environments (MRP of 0.051 -3.4% and ORP of 0.35-2.7% affected population). The adverse effect risk probabilities estimated by using the Monte-Carlo simulation technique and the ORP method were found to be generally consistent.

6.
Int J Environ Res Public Health ; 11(6): 6354-74, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24945191

ABSTRACT

A comprehensive evaluation of the adverse health effects of human exposures to BTX from service station emissions was carried out using BTX exposure data from the scientific literature. The data was grouped into different scenarios based on activity, location and occupation and plotted as Cumulative Probability Distributions (CPD) plots. Health risk was evaluated for each scenario using the Hazard Quotient (HQ) at 50% (CEXP50) and 95% (CEXP95) exposure levels. HQ50 and HQ95 > 1 were obtained with benzene in the scenario for service station attendants and mechanics repairing petrol dispensing pumps indicating a possible health risk. The risk was minimized for service stations using vapour recovery systems which greatly reduced the benzene exposure levels. HQ50 and HQ95 < 1 were obtained for all other scenarios with benzene suggesting minimal risk for most of the exposed population. However, HQ50 and HQ95 < 1 was also found with toluene and xylene for all scenarios, suggesting minimal health risk. The lifetime excess Cancer Risk (CR) and Overall Risk Probability for cancer on exposure to benzene was calculated for all Scenarios and this was higher amongst service station attendants than any other scenario.


Subject(s)
Air Pollutants, Occupational/analysis , Benzene Derivatives/analysis , Occupational Exposure/analysis , Benzene/analysis , Benzene Derivatives/adverse effects , Gasoline , Humans , Neoplasms/chemically induced , Risk Assessment , Toluene/analysis , Xylenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...