Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Phytoremediation ; : 1-8, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010720

ABSTRACT

The objective of this study was to determine the efficiency of the microbial rhizosphere (Canavalia ensiformis) in the phytoremediation of sulfentrazone using quantification methods (CO2 evolution, microbial biomass carbon, and metabolic quotient) and identification of bacteria (PCR-DGGE technique). The experiment was conducted in a completely randomized design, in a 2x4 factorial scheme, with four replications. The treatments were composed of rhizospheric soil (cultivated with C. ensiformis) and non-rhizosphere soil (uncultivated soil); and four levels of contamination by sulfentrazone (0, 200, 400, and 800 g ha-1 a.i.). The microbiota associated with the rhizosphere of C. ensiformis efficiently reduced sulfentrazone residues in the soil, with better performance at the dose of 200 g ha-1 a.i. Using the PCR-DGGE technique allowed the distinction of two profiles of bacteria in the rhizospheric activity of C. ensiformis. The second bacterial profile formed was more efficient in decontaminating soil contaminated with sulfentrazone residue. The microbiota associated with the rhizosphere of C. ensiformis has an efficient profile in decontaminating soils with residues equivalent to 200 g ha-1 a.i. the herbicide sulfentrazone.


Phytoremediation of soils contaminated with herbicide residues is a viable technique for decontamination of the environment.Canavalia ensiformis has an efficient profile in the decontamination of soils with residue equivalent to 200 g ha−1 a.i. of the herbicide sulfentrazone.The PCR technique and microbial respiration used to analyze the diversity and estimate the bacterial population of a soil are viable tools to evaluate the phytoremediation potential of the microbiota associated with plant species.

2.
Chemosphere ; 262: 127869, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32771709

ABSTRACT

Barite (BaSO4) is a component of drilling fluids used in the oil and gas industry and may cause barium (Ba) contamination if it is spilled onto flooded soils. Under anoxic soil conditions and low redox potential, sulfate can be reduced to a more soluble form (sulfide), and Ba can be made available. To design a solution for such environmental issues, a field study was conducted in a Ba-contaminated flooded area in Brazil, in which we induced Ba phytoextraction from the management of the planting density of two intercropped macrophytes. Typha domingensis and Eleocharis acutangula were grown in four initial planting densities: "Ld" (low density: 4 and 32 plants m-2); "Md" (medium density: 8 and 64 plants m-2); "Hd" (high density: 12 and 128 plants m-2); "Vhd" (very high density: 16 and 256 plants m-2). Vhd produced the largest number of plants after 300 days. However, the treatments did not differ in terms of the amount of biomass. The increments in the initial planting density did not increase the Ba concentration in the aerial part. The greatest Ba phytoextraction (aerial part + root) was achieved by Ld treatment, which removed approximately 3 kg of Ba ha-1. Md and Vhd treatments had the highest Ba translocation factors. Because more plants per area did not result in greater Ba phytoextraction, a lower planting density was recommended for the intercropping of T. domingensis and E. acutangula to promote the phytoextraction of barium, due to possible lower implementation costs in contaminated flooded environments.


Subject(s)
Biodegradation, Environmental , Soil Pollutants/metabolism , Typhaceae/physiology , Barium , Barium Sulfate , Biomass , Brazil , Eleocharis , Floods , Soil , Soil Pollutants/analysis
3.
Int J Phytoremediation ; 21(7): 652-662, 2019.
Article in English | MEDLINE | ID: mdl-30656954

ABSTRACT

This study evaluated remediation of the herbicide sulfentrazone in soils with three different mineralogies (kaolinite, hematite, and gibbsite) and three remediation sulfentrazone treatments (Canavalia ensiformis L., Crotalaria juncea L., and natural attenuation). This study was conducted in a factorial scheme, in triplicate with randomized block design. Sulfentrazone was applied at 0 and 400 g ha-1. We analyzed sulfentrazone residue in the soils by high-performance liquid chromatography and confirmed the results with bioassays of Pennisetum glaucum. Herbicide movement was greater in the kaolinitic soil without plant species. The retention of herbicide in the kaolinitic soil occurred in larger quantities in the 0-12 cm layer, with higher levels found in the treatments with plants. In the hematitic soil with C. juncea, all applied herbicides were concentrated in the 0-12 cm layer. In the other hematitic soil treatments, sulfentrazone was not detected by chemical analysis at any soil depth, although in many treatments, it was detected in the bioassay. Phytoremediation was more efficient with C. ensiformis grown in gibbsitic soil, reducing the sulfentrazone load by approximately 27%. Natural attenuation was more efficient than phytoremediation in oxidic soils due to soil pH and texture soils favored microbial degradation of the compound. Highlights The influence of soil mineralogy of herbicide sulfentrazone retention was evaluated. Canavalia ensiformis and Crotalaria juncea were evaluated as phytoremediation plants. Kaolinite soils presented great movement of sulfentrazone in the soil. Natural attenuation is more efficient in oxide soils than phytoremediation.


Subject(s)
Soil Pollutants , Soil/chemistry , Biodegradation, Environmental , Sulfonamides , Triazoles
4.
J Hazard Mater ; 362: 124-131, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30236932

ABSTRACT

In anoxic environmental conditions and with a drastic reduction of the redox potential, the barium sulphate used in petroleum drilling fluids becomes a hazard to the ecosystem. A field study was conducted in Brazil in an area with a history of accidental Barium (Ba) contamination to evaluate the role of frequent plant cutting on phytoremediation. The plant species Typha domingensis and Eleocharis acutangula, cultivated in a combined plantation, were subjected to four different cut frequencies: every 90 days (four cuts), 120 days (three cuts), 180 days (two cuts), or 360 days (one cut). The total amount of Ba extracted from the soil by the plants was evaluated for each treatment and at different soil depths Overall, total Ba in the soil decreased the most dramatically for cut frequencies of 120 (37.83%) and 180 (47.73%) days at 0-0.2 m below the surface, and with cut frequencies of 120 (51.98%) and 360 (31.79%) at 0.2-0.4 m depth. Further, total Ba in the plant biomass was greatest in the 120 and 360-days frequency groups. Thus, cuts at intervals of 120 days or more are associated with high levels of Ba in the plant tissue and a decrease of soil Ba.


Subject(s)
Barium/isolation & purification , Biodegradation, Environmental , Biomass , Soil Pollutants/analysis , Adsorption , Agriculture , Brazil/epidemiology , Ecosystem , Eleocharis/growth & development , Floods , Hydrogen-Ion Concentration , Soil , Time Factors , Typhaceae/growth & development
5.
Chemosphere ; 214: 10-16, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30248554

ABSTRACT

Aquatic macrophytes are potentially useful for phytoremediation on flooded areas. A field study in Brazil was conducted to evaluate Eleocharis acutangula (E), Cyperus papyrus (C) and Typha domingensis (T) in monocropping and intercropping, aiming to phytoremediate barium-polluted flooded soils. The treatments were: monocroppings (E, C and T); double intercroppings (EC, ET and CT); and triple intercropping (ECT). The 180-d field trial was performed in a flooded area with high barium content, with a randomized complete block design and three replicates. Plant stand size, biomass yield, and Ba concentration aboveground/Ba concentration in roots (translocation factor - TF) as well as Ba mass aboveground/Ba mass in roots (mass translocation factor - mTF) were determined. Most of the treatments did not differ on dry biomass, except for EC, which showed the lowest yield. Consistently with its biology, E. acutangula in monocropping showed the largest plant stand. Otherwise, intercroppings with T. domingensis achieved the highest amounts of barium absorbed from the soil and transferred most of the barium content from belowground to aboveground (mTF > 1.0), especially ET, which showed the highest mTF among the intercroppings (2.03). Remarkably, TF values did not reflect such phytoextraction ability for CT and ECT. Thus, mTF was more appropriate than TF to assess phytoextraction capacity. Furthermore, it was demonstrated that intercropping can increase barium uptake from flooded soils. Particularly, the intercropping ET constituted the most cost-effective treatment, with the cyperaceous species providing high plant coverage while T. domingensis facilitated barium removal by translocating it to the aboveground biomass.


Subject(s)
Barium Sulfate/chemistry , Barium/adverse effects , Soil Pollutants/chemistry , Soil/chemistry , Biodegradation, Environmental , Floods , Soil Pollutants/analysis
6.
Chemosphere ; 134: 181-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25950134

ABSTRACT

The role of chemical and mineralogical soil properties in the retention and oxidation of atmospheric mercury in tropical soils is discussed based on thermal desorption analysis. The retention of gaseous mercury by tropical soils varied greatly both quantitatively and qualitatively with soil type. The average natural mercury content of soils was 0.08 ± 0.06 µg g(-1) with a maximum of 0.215 ± 0.009 µg g(-1). After gaseous Hg(0) incubation experiments, mercury content of investigated soils ranged from 0.6 ± 0.2 to 735 ± 23 µg g(-1), with a mean value of 44 ± 146 µg g(-1). Comparatively, A horizon of almost all soil types adsorbed more mercury than B horizon from the same soil, which demonstrates the key role of organic matter in mercury adsorption. In addition to organic matter, pH and CEC also appear to be important soil characteristics for the adsorption of mercury. All thermograms showed Hg(2+) peaks, which were predominant in most of them, indicating that elemental mercury oxidized in tropical soils. After four months of incubation, the thermograms showed oxidation levels from 70% to 100%. As none of the samples presented only the Hg(0) peak, and the soils retained varying amounts of mercury despite exposure under the same incubation conditions, it became clear that oxidation occurred on soil surface. Organic matter seemed to play a key role in mercury oxidation through complexation/stabilization of the oxidized forms. The lower percentages of available mercury (extracted with KNO3) in A horizons when compared to B horizons support this idea.


Subject(s)
Mercury/analysis , Oxygen/chemistry , Soil Pollutants/analysis , Adsorption , Air Pollutants/analysis , Brazil , Environmental Monitoring/methods , Gases/analysis , Geography , Hydrogen-Ion Concentration , Organic Chemicals/analysis , Soil/chemistry , Spectrophotometry, Atomic , Temperature , Tropical Climate
7.
Int J Phytoremediation ; 17(1-6): 313-21, 2015.
Article in English | MEDLINE | ID: mdl-25409243

ABSTRACT

This study aimed to evaluate the herbicidal activity of picloram on the biomass of the remediation plants Eleusine coracana and Panicum maximum after cultivation in a soil contaminated with this herbicide. These species were grown in three soils, differentiated based on texture (clayish, middle, and sandy, with 460, 250, and 40 g kg(-1) of the clay, respectively), previously contaminated with picloram (0, 80, and 160 g ha(-1)). After 90 days, the plants were harvested and an extract was produced by maceration of leaves and stems of these plants. It was applied to pots containing washed sand, comprising a bioassay in a growth chamber using soybean as a bioindicator for picloram. Soil and plant samples were analyzed by HPLC. The results showed the presence of picloram or metabolites with herbicidal activity in the shoots of E. coracana and P. maximum at phytotoxic levels with regard to soybean plants, indicating that they work only as phytoextractors and that the presence of straw on the soil surface can promote recontamination within the area. It is not recommended to cultivate species susceptible to picloram in areas where it was reported remediation by E. indica and P. maximum and still present residues of these species.


Subject(s)
Eleusine/metabolism , Environmental Restoration and Remediation/methods , Herbicides/metabolism , Panicum/metabolism , Picloram/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Eleusine/chemistry , Environmental Restoration and Remediation/instrumentation , Herbicides/analysis , Panicum/chemistry , Picloram/analysis , Plant Stems/chemistry , Plant Stems/metabolism , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL