Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Free Radic Biol Med ; 208: 1-12, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37506952

ABSTRACT

Heritable renal cancer syndromes (RCS) are associated with numerous chromosomal alterations including inactivating mutations in von Hippel-Lindau (VHL) gene. Here we identify a novel aspect of the phenotype in VHL-deficient human renal cells. We call it reductive stress as it is characterised by increased NADH/NAD+ ratio that is associated with impaired cellular respiration, impaired CAC activity, upregulation of reductive carboxylation of glutamine and accumulation of lipid droplets in VHL-deficient cells. Reductive stress was mitigated by glucose depletion and supplementation with pyruvate or resazurin, a redox-reactive agent. This study demonstrates for the first time that reductive stress is a part of the phenotype associated with VHL-deficiency in renal cells and indicates that the reversal of reductive stress can augment respiratory activity and CAC activity, suggesting a strategy for altering the metabolic profile of VHL-deficient tumours.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Kidney Neoplasms/metabolism , Carcinoma, Renal Cell/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Glutamine/metabolism , Up-Regulation
2.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36077504

ABSTRACT

Ischemia reperfusion injury is common in transplantation. Previous studies have shown that cooling can protect against hypoxic injury. To date, the protective effects of hypothermia have been largely associated with metabolic suppression. Since kidney transplantation is one of the most common organ transplant surgeries, we used human-derived renal proximal tubular cells (HKC8 cell line) as a model of normal renal cells. We performed a temperature titration curve from 37 °C to 22 °C and evaluated cellular respiration and molecular mechanisms that can counteract the build-up of reducing equivalents in hypoxic conditions. We show that the protective effects of hypothermia are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component), with the highest overlap between activating and suppressing mechanisms emerging in the window of mild hypothermia (32 °C). Hypothermia decreased hypoxia-induced rise in the extracellular lactate:pyruvate ratio, increased ATP/ADP ratio and mitochondrial content, normalized lipid content, and improved the recovery of respiration after anoxia. Importantly, it was observed that in contrast to mild hypothermia, moderate and deep hypothermia interfere with HIF1 (hypoxia inducible factor 1)-dependent HRE (hypoxia response element) induction in hypoxia. This work also demonstrates that hypothermia alleviates reductive stress, a conceptually novel and largely overlooked phenomenon at the root of ischemia reperfusion injury.


Subject(s)
Hypothermia, Induced , Hypothermia , Reperfusion Injury , Cold Temperature , Humans , Hypoxia
3.
Biochim Biophys Acta ; 1857(6): 819-30, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27056771

ABSTRACT

Electrochromic shift measurements confirmed that the Q-cycle operated in sunflower leaves. The slow temporarily increasing post-pulse phase was recorded, when ATP synthase was inactivated in the dark and plastoquinol (PQH(2)) oxidation was initiated by a short pulse of far-red light (FRL). During illumination by red light, the Q-cycle-supported proton arrival at the lumen and departure via ATP synthase were simultaneous, precluding extreme build-up of the membrane potential. To investigate the kinetics of the Q-cycle, less than one PQH(2) per cytochrome b(6)f (Cyt b(6)f) were reduced by illuminating the leaf with strong light pulses or single-turnover Xe flashes. The post-pulse rate of oxidation of these PQH2 molecules was recorded via the rate of reduction of plastocyanin (PC(+)) and P700(+), monitored at 810 and 950 nm. The PSII-reduced PQH(2) molecules were oxidized with multi-phase overall kinetics, τ(d)=1, τ(p)=5.6 and τ(s)=16 ms (22 °C). We conclude that τ(d) characterizes PSII processes and diffusion, τ(p) is the bifurcated oxidation of the primary quinol and τ(s) is the Q-cycle-involving reduction of the secondary quinol at the n-site, its transport to the p-site, and bifurcated oxidation there. The extraordinary slow kinetics of the Q-cycle may be related to the still unsolved mechanism of the "photosynthetic control."


Subject(s)
Cytochrome b6f Complex/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plastocyanin/metabolism , Plastoquinone/analogs & derivatives , Algorithms , Chlorophyll/metabolism , Cytochromes f/metabolism , Electron Transport , Helianthus/metabolism , Helianthus/radiation effects , Kinetics , Light , Light-Harvesting Protein Complexes/metabolism , Models, Biological , Oxidation-Reduction , Photosynthesis/radiation effects , Photosystem I Protein Complex/metabolism , Plant Leaves/radiation effects , Plastoquinone/metabolism
4.
Biochim Biophys Acta ; 1847(6-7): 565-75, 2015.
Article in English | MEDLINE | ID: mdl-25800682

ABSTRACT

In sunflower leaves linear electron flow LEF=4O2 evolution rate was measured at 20 ppm O2 in N2. PSII charge separation rate CSRII=aII∙PAD∙(Fm-F)/Fm, where aII is excitation partitioning to PSII, PAD is photon absorption density, Fm and F are maximum and actual fluorescence yields. Under 630 nm LED+720 nm far-red light (FRL), LEF was equal to CSRII with aII=0.51 to 0.58. After FRL was turned off, plastoquinol (PQH2) accumulated, but LEF decreased more than accountable by F increase, indicating PQH2-oxidizing cyclic electron flow in PSII (CEFII). CEFII was faster under conditions requiring more ATP, consistent with CEFII being coupled with proton translocation. We propose that PQH2 bound to the QC site is oxidized, one e- moving to P680+, the other e- to Cyt b559. From Cyt b559 the e- reduces QB- at the QB site, forming PQH2. About 10-15% electrons may cycle, causing misses in the period-4 flash O2 evolution and lower quantum yield of photosynthesis under stress. We also measured concentration dependence of PQH2 oxidation by dioxygen, as indicated by post-illumination decrease of Chl fluorescence yield. After light was turned off, F rapidly decreased from Fm to 0.2 Fv, but further decrease to F0 was slow and O2 concentration dependent. The rate constant of PQH2 oxidation, determined from this slow phase, was 0.054 s(-1) at 270 µM (21%) O2, decreasing with Km(O2) of 60 µM (4.6%) O2. This eliminates the interference of O2 in the measurements of CEFII.


Subject(s)
Helianthus/metabolism , Light , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plastoquinone/analogs & derivatives , Adenosine Triphosphate/metabolism , Chlorophyll/chemistry , Chlorophyll/metabolism , Electron Transport , Electrons , Fluorescence , Oxidation-Reduction , Photons , Photosynthesis/physiology , Plastoquinone/chemistry , Plastoquinone/metabolism
5.
Photosynth Res ; 122(1): 41-56, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24817180

ABSTRACT

This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.


Subject(s)
Helianthus/physiology , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Zea mays/physiology , Chlorophyll/metabolism , Electron Transport , Fluorescence , Helianthus/radiation effects , Light , Malate Dehydrogenase/metabolism , Mesophyll Cells , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Proteins/metabolism , Plant Vascular Bundle/physiology , Plant Vascular Bundle/radiation effects , Spectrometry, Fluorescence , Zea mays/radiation effects
6.
Biochim Biophys Acta ; 1837(2): 315-25, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24333386

ABSTRACT

The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes.


Subject(s)
Helianthus/metabolism , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Quantum Theory , Electron Transport , Electrons , Infrared Rays , Oxygen/metabolism , Photons , Spectrum Analysis , Time Factors
7.
Photosynth Res ; 113(1-3): 145-55, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22644479

ABSTRACT

Oxygen evolution and Chl fluorescence induction were measured during multiple turnover light pulses (MTP) of 630-nm wavelength, intensities from 250 to 8,000 µmol quanta m(-2) s(-1) and duration from 0.3 to 200 ms in sunflower leaves at 22 °C. The ambient O(2) concentration was 10-30 ppm and MTP were applied after pre-illumination under far-red light (FRL), which oxidized plastoquinone (PQ) and randomized S-states because of the partial excitation of PSII. Electron (e ( - )) flow was calculated as 4·O(2) evolution. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated against pulse length to find the time course of O(2) evolution rate with sub-millisecond resolution. Comparison of the quantum yields, Y (IIO) = e ( - )/hν from O(2) evolution and Y (IIF) = (F (m) - F)/F (m) from Chl fluorescence, detected significant losses not accompanied by fluorescence emission. These quantum losses are discussed to be caused by charge recombination between Q (A) (-) and oxidized TyrZ at a rate of about 1,000 s(-1), either directly or via the donor side equilibrium complex Q(A) â†’ P (D1) (+)  â†” TyrZ(ox), or because of cycling facilitated by Cyt b (559). Predicted from the suggested mechanism, charge recombination is enhanced by damage to the water-oxidizing complex and by restricted PSII acceptor side oxidation. The rate of PSII charge recombination/cycling is fast enough for being important in photoprotection.


Subject(s)
Chlorophyll/metabolism , Fluorescence , Helianthus/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Absorption/radiation effects , Electron Transport/radiation effects , Kinetics , Plant Leaves/radiation effects , Quantum Theory , Time Factors
8.
Plant Cell Environ ; 35(5): 839-56, 2012 May.
Article in English | MEDLINE | ID: mdl-22070625

ABSTRACT

Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in saplings of Populus tremula L. An one-dimensional diffusion model was used to gain insight into the importance of key anatomical traits in determining g(m) . Leaf development was associated with increases in dry mass per unit area, thickness, density, exposed mesophyll (S(mes) /S) and chloroplast (S(c) /S) to leaf area ratio, internal air space (f(ias) ), cell wall thickness and chloroplast dimensions. Development of S(mes) /S and S(c) /S was delayed under low light. Reduction in light availability was associated with lower S(c) /S, but with larger f(ias) and chloroplast thickness. Water stress reduced S(c) /S and increased cell wall thickness under high light. In all treatments, g(m) and A(n) increased and CO(2) drawdown because of g(m) , C(i) -C(c) , decreased with increasing leaf age. Low light and drought resulted in reduced g(m) and A(n) and increased C(i) -C(c) . These results emphasize the importance of g(m) and its components in determining A(n) variations during leaf development and in response to stress.


Subject(s)
Light , Photosynthesis/physiology , Plant Transpiration/physiology , Populus/physiology , Stress, Physiological/physiology , Water/metabolism , Carbon Dioxide/metabolism , Cell Wall/metabolism , Chloroplasts/metabolism , Dehydration , Diffusion , Mesophyll Cells/metabolism , Models, Biological , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Leaves/ultrastructure , Plant Stomata/physiology , Populus/growth & development , Populus/radiation effects , Populus/ultrastructure , Time Factors
9.
Photosynth Res ; 110(2): 99-109, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22038184

ABSTRACT

Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 µmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f.


Subject(s)
Helianthus/radiation effects , Light , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/radiation effects , Binding Sites , Cytochrome b6f Complex/metabolism , Electron Transport , Helianthus/metabolism , Kinetics , Oxidation-Reduction , Photosynthesis , Plant Leaves/metabolism , Plant Proteins/metabolism , Plastoquinone/metabolism , Time Factors
10.
Photosynth Res ; 110(2): 73-88, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22002818

ABSTRACT

This report describes a new method to measure the chloroplastic lumenal proton pool in leaves (tobacco and sunflower). The method is based on measurement of CO(2) outbursts from leaves caused by the shift in the CO(2) + H(2)O ↔ HCO(3)(-) + H(+) equilibrium in the chloroplast stroma as protons return from the lumen after darkening. Protons did not accumulate in the lumen to a significant extent when photosynthesis was light-limited, but a large pool of >100 µmol H(+) m(-2) accumulated in the lumen as photosynthesis became light-saturated. During thylakoid energization in the light, large amounts of protons are moved from binding sites in the stroma to binding sites in the lumen. The transthylakoidal difference in the chemical potential of free protons (ΔpH) is largely based on the difference in the chemical potential of bound protons in the lumenal and stromal compartments (pK). Over the course of the dark-light induction of photosynthesis protons accumulate in the lumen during reduction of 3-phosphoglycerate. The accumulation of electrons in reduced compounds of the stroma and cytosol is the natural cause for accumulation of a stoichiometric pool of lumenal protons during this transient event.


Subject(s)
Chloroplasts/metabolism , Photosynthesis , Plant Leaves/metabolism , Protons , Acrylic Resins , Adenosine Triphosphate/metabolism , Binding Sites , Biological Transport , Carbon Dioxide/metabolism , Darkness , Glyceric Acids/metabolism , Helianthus/metabolism , Light , Membrane Potentials , Photochemical Processes , Ribulosephosphates/metabolism , Spectrum Analysis/methods , Staining and Labeling , Nicotiana/metabolism
11.
Photosynth Res ; 103(3): 153-66, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20130995

ABSTRACT

Oxidation of photosystem I (PSI) donors under far-red light (FRL), slow re-reduction by stromal reductants and fast re-reduction in the dark subsequent to illumination by white light (WL) were recorded in leaves of several C(3) plants at 810 and 950 nm. During the re-reduction from stromal reductants the mutual interdependence of the two signals followed the theoretical relationship calculated assuming redox equilibrium between plastocyanin (PC) and P700, with the equilibrium constant of 40 +/- 10 (Delta E (m) = 86-99 mV) in most of the measured 24 leaves of nine plant species. The presence of non-oxidizable PC of up to 13% of the whole pool, indicating partial control of electron transport by PC diffusion, was transiently detected during a saturation pulse of white light superimposed on FRL or on low WL. Nevertheless, non-oxidizable PC was absent in the steady state during fast light-saturated photosynthesis. It is concluded that in leaves during steady state photosynthesis the electron transport rate is not critically limited by PC diffusion, but the high-potential electron carriers PC and P700 remain close to the redox equilibrium.


Subject(s)
Electrons , Helianthus/physiology , Helianthus/radiation effects , Light , Photosystem I Protein Complex/metabolism , Carbon Dioxide/metabolism , Electron Transport/radiation effects , Ferredoxins/metabolism , Oxidation-Reduction/radiation effects , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plastocyanin/metabolism , Spectrum Analysis
12.
Photosynth Res ; 103(2): 79-95, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20039131

ABSTRACT

Fast cyclic electron transport (CET) around photosystem I (PS I) was observed in sunflower (Helianthus annuus L.) leaves under intense far-red light (FRL) of up to 200 mumol quanta m(-2) s(-1). The electron transport rate (ETR) through PS I was found from the FRL-dark transmittance change at 810 and 950 nm, which was deconvoluted into redox states and pool sizes of P700, plastocyanin (PC) and cytochrome f (Cyt f). PC and P700 were in redox equilibrium with K(e) = 35 (ΔE(m) = 90 mV). PS II ETR was based on O(2) evolution. CET [(PS I ETR) - (PS II ETR)] increased to 50-70 mumol e(-) m(-2) s(-1) when linear electron transport (LET) under FRL was limited to 5 mumol e(-) m(-2) s(-1) in a gas phase containing 20-40 mumol CO(2) mol(-1) and 20 mumol O(2) mol(-1). Under these conditions, pulse-saturated fluorescence yield F(m) was non-photochemically quenched; however, F(m) was similarly quenched when LET was driven by low green or white light, which energetically precluded the possibility for active CET. We suggest that under FRL, CET is rather not coupled to transmembrane proton translocation than the CET-coupled protons are short-circuited via proton channels regulated to open at high ΔpH. A kinetic analysis of CET electron donors and acceptors suggests the CET pathway is that of the reversed Q-cycle: Fd -> (FNR) -> Cyt c(n) -> Cyt b(h) -> Cyt b(l) -> Rieske FeS -> Cyt f -> PC -> P700 ->-> Fd. CET is activated when PQH(2) oxidation is opposed by high ΔpH, and ferredoxin (Fd) is reduced due to low availability of e(-) acceptors. The physiological significance of CET may be photoprotective, as CET may be regarded as a mechanism of energy dissipation under stress conditions.


Subject(s)
Light , Photosystem I Protein Complex/metabolism , Plant Leaves/metabolism , Plant Leaves/radiation effects , Protons , Absorption/drug effects , Absorption/radiation effects , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis/radiation effects , Carbon Dioxide/pharmacology , Electron Transport/drug effects , Electron Transport/radiation effects , Electrons , Helianthus/drug effects , Helianthus/metabolism , Helianthus/radiation effects , Kinetics , Mutation/genetics , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Quantum Theory , Spectrometry, Fluorescence
13.
Plant Cell Physiol ; 48(11): 1575-88, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17938131

ABSTRACT

Measurements of 810 nm transmittance changes in leaves, simultaneously with Chl fluorescence, CO(2) uptake and O(2) evolution, were carried out on potato (Solanum tuberosum L.) leaves with altered expression of plastidic NADP-dependent malate dehydrogenase. Electron transport rates were calculated: J(C) from the CO(2) uptake rate considering ribulose-1,5-bisphosphate (RuBP) carboxylation and oxygenation, J(O) from the O(2) evolution rate, J(F) from Chl fluorescence parameters and J(I) from the post-illumination re-reduction speed of PSI donors. In the absence of external O(2), J(O) equaled (1.005 +/- 0.003) J(C), independent of the transgenic treatment, light intensity and CO(2) concentration. This showed that nitrite and oxaloacetate reduction rates were very slow. The Mehler-type O(2) reduction was evaluated from the rate of electron accumulation at PSI after the O(2) concentration was decreased from 210 to 20 mmol mol(-1), and resulted in <1% of the linear flow. J(F) and J(I) did not differ from J(C) while photosynthesis was light-limited, but considerably exceeded J(C) at saturating light. Then, typically, J(F) = 1.2 J(C) and J(I) = 1.3 J(C), and J(F) -J(C) and J(I) -J(C) depended little on CO(2) and O(2) concentrations. The results showed that the alternative and cyclic electron flow necessary to compensate variations in the ATP/NADPH ratio were only a few percent of the linear flow. The data do not support the requirement of 14H(+)/3ATP by the chloroplast ATP synthase. We suggest that the fast PSI cyclic electron flow J(I) - J(C), as well as the fast J(F) - J(C) are energy-dissipating cycles around PSI and PSII at light saturation.


Subject(s)
Plant Leaves/metabolism , Solanum tuberosum/metabolism , Carbon Dioxide/metabolism , Electron Transport/drug effects , Electron Transport/physiology , Oxygen/metabolism , Oxygen/pharmacology , Photosynthesis/drug effects , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Plant Leaves/physiology , Solanum tuberosum/drug effects , Solanum tuberosum/physiology
14.
Plant Cell Physiol ; 48(1): 198-203, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17169918

ABSTRACT

The stoichiometric ratio of O2 evolution to CO2 uptake during photosynthesis reveals information about reductive metabolism, including the reduction of alternative electron acceptors, such as nitrite and oxaloacetate. Recently we reported that in simultaneous measurements of CO2 uptake and O2 evolution in a sunflower leaf, O2 evolution changed by 7% more than CO2 uptake when light intensity was varied. Since the O2/CO2 exchange ratio is approximately 1, small differences are important. Thus, these gas exchange measurements need precise calibration. In this work, we describe a new calibration procedure for such simultaneous measurements, based on the changes of O2 concentration caused by the addition of pure CO2 or O2 into a flow of dry air (20.95% O2) through one and the same capillary. The relative decrease in O2 concentration during the addition of CO2 and the relative increase in O2 concentration during the addition of O2 allowed us to calibrate the CO2 and O2 scales of the measurement system with an error (relative standard deviation, RSD) of <1%. Measurements on a sunflower leaf resulted in an O2/CO2 ratio between 1.0 and 1.03 under different CO2 concentrations and light intensities, in the presence of an ambient O2 concentration of 20-50 micromol mol(-1). This shows that the percentage use of reductive power from photochemistry in synthesis of inorganic or organic matter other than CO2 assimilation in the C3 cycle is very low in mature leaves and, correspondingly, the reduction of alternative acceptors is a weak source of coupled ATP synthesis.


Subject(s)
Carbon Dioxide/metabolism , Helianthus/physiology , Oxygen/metabolism , Photosynthesis/physiology , Plant Leaves/physiology , Calibration , Kinetics
15.
Physiol Plant ; 131(1): 1-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-18251919

ABSTRACT

We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O(2) concentrations in N(2) (9-1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O(2) concentration and the increase in CO(2) concentration as result of leaf respiration were measured by a zirconium cell O(2) analyser and infrared-absorption CO(2) analyser, respectively. The low O(2) concentrations little influenced the rate of CO(2) evolution during the 60-s exposure. The initial slope of the O(2) uptake curve on the dissolved O(2) concentration basis was relatively constant in leaves of a single species, 1.5 mm s(-1) in sunflower and 1.8 mm s(-1) in aspen. The apparent K(0.5)(O(2)) values ranged from 0.33 to 0.67 microM in sunflower and from 0.33 to 1.1 microM in aspen, mainly because of the variation of the maximum rate, V(max) (leaf temperature 22 degrees C). The initial slope of the O(2) response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.


Subject(s)
Oxidoreductases/metabolism , Oxygen/metabolism , Plant Leaves/physiology , Plant Proteins/metabolism , Carbon Dioxide/metabolism , Cell Respiration/physiology , Electron Transport , Kinetics , Photosynthesis/physiology , Plant Leaves/enzymology , Plant Leaves/metabolism , Populus/enzymology , Populus/metabolism , Populus/physiology
16.
Photosynth Res ; 90(1): 45-66, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17131095

ABSTRACT

A computer model comprising light reactions, electron-proton transport, enzymatic reactions, and regulatory functions of C3 photosynthesis has been developed as a system of differential budget equations for intermediate compounds. The emphasis is on electron transport through PSII and PSI and on the modeling of Chl fluorescence and 810 nm absorptance signals. Non-photochemical quenching of PSII excitation is controlled by lumenal pH. Alternative electron transport is modeled as the Mehler type O2 reduction plus the malate-oxaloacetate shuttle based on the chloroplast malate dehydrogenase. Carbon reduction enzymes are redox-controlled by the ferredoxin-thioredoxin system, sucrose synthesis is controlled by the fructose 2,6-bisphosphate inhibition of cytosolic FBPase, and starch synthesis is controlled by ADP-glucose pyrophosphorylase. Photorespiratory glycolate pathway is included in an integrated way, sufficient to reproduce steady-state rates of photorespiration. Rate-equations are designed on principles of multisubstrate-multiproduct enzyme kinetics. The parameters of the model were adopted from literature or were estimated from fitting the photosynthetic rate and pool sizes to experimental data. The model provided good simulations for steady-state photosynthesis, Chl fluorescence, and 810 nm transmittance signals under varying light, CO2 and O2 concentrations, as well as for the transients of post-illumination CO2 uptake, Chl fluorescence induction and the 810 nm signal. The modeling shows that the present understanding of photosynthesis incorporated in the model is basically correct, but still insufficient to reproduce the dark-light induction of photosynthesis, the time kinetics of non-photochemical quenching, 'photosynthetic control' of plastoquinone oxidation, cyclic electron flow around PSI, oscillations in photosynthesis. The model may find application for predicting the results of gene transformations, the analysis of kinetic experimental data, the training of students.


Subject(s)
Models, Biological , Photosynthesis , Carbon/metabolism , Chloroplasts/enzymology , Kinetics , Malate Dehydrogenase/metabolism , Oxidation-Reduction , Photons , Silicon
17.
Plant Cell Physiol ; 47(7): 972-83, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16774929

ABSTRACT

Sunflower (Helianthus annuus L.) and tobacco (Nicotiana tabacum L.) were grown in the laboratory and leaves were taken from field-grown birch trees (Betula pendula Roth). Chlorophyll fluorescence, CO2 uptake and O2 evolution were measured and electron transport rates were calculated, J(C) from the CO2 uptake rate considering ribulose-1,5-bisphosphate (RuBP) carboxylation and oxygenation, J(O) from the O2 evolution rate, and J(F) from Chl fluorescence parameters. Mesophyll diffusion resistance, r(md), used for the calculation of J(C), was determined such that the in vivo Rubisco kinetic curve with respect to the carboxylation site CO2 concentration became a rectangular hyperbola with Km(CO2) of 10 microM at 22.5 degrees C. In sunflower, in the absence of external O2, J(O) = 1.07 J(C) when absorbed photon flux density (PAD) was varied, showing that the O2-independent components of the alternative electron flow to acceptors other than CO2 made up 7% of J(C). Under saturating light, J(F), however, was 20-30% faster than J(C), and J(F)-J(C) depended little on CO2 and O2 concentrations. The inter-relationship between J(F)-J(C) and non-photochemical quenching (NPQ) was variable, dependent on the CO2 concentration. We conclude that the relatively fast electron flow J(F)-J(C) appearing at light saturation of photosynthesis contains a minor component coupled with proton translocation, serving for nitrite, oxaloacetate and oxygen reduction, and a major component that is mostly cyclic electron transport around PSII. The rate of the PSII cycle is sufficient to release the excess excitation pressure on PSII significantly. Although the O2-dependent Mehler-type alternative electron flow appeared to be under the detection threshold, its importance is discussed considering the documented enhancement of photosynthesis by oxygen.


Subject(s)
Electrons , Photosynthesis/physiology , Photosystem II Protein Complex/physiology , Plant Leaves/physiology , Betula/physiology , Carbon Dioxide/metabolism , Electron Transport/physiology , Helianthus/physiology , Mathematics , Oxygen/metabolism , Nicotiana/physiology
18.
Biochim Biophys Acta ; 1708(1): 79-90, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15949986

ABSTRACT

The light-dependent control of photosynthetic electron transport from plastoquinol (PQH(2)) through the cytochrome b(6)f complex (Cyt b(6)f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700(+) and PC(+) was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC(+) and P700(+) components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b(6)f to the PSI donors. A significant down-regulation of Cyt b(6)f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b(6)f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e(-) transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.


Subject(s)
Cytochrome b6f Complex/metabolism , Electron Transport/physiology , Photosynthesis/physiology , Photosystem I Protein Complex/metabolism , Plant Leaves/metabolism , Betula , Chlorophyll/metabolism , Fluorometry , Helianthus , Light , Plant Shoots/metabolism , Plants, Genetically Modified , Solidago , Tilia , Nicotiana
19.
Photosynth Res ; 78(1): 1-15, 2003.
Article in English | MEDLINE | ID: mdl-16245060

ABSTRACT

By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and birch (Betula pendula Roth.) leaves. PS I donor side carriers were first oxidized under FRL, electrons were then allowed to accumulate on the PS I donor side during dark intervals of increasing length. After each dark interval the electrons were removed (titrated) by FRL. The kinetics of the 820 nm signal during the oxidation of the PS I donor side was modeled assuming redox equilibrium among the PS I donor pigment (P700), plastocyanin (PC), and cytochrome f plus Rieske FeS (Cyt f + FeS) pools, considering that the 820 nm signal originates from P700(+) and PC(+). The analysis yielded the pool sizes of P700, PC and (Cyt f + FeS) and associated redox equilibrium constants. PS I density varied between 0.6 and 1.4 mumol m(-2). PS II density (measured as O(2) evolution from a saturating single-turnover flash) ranged from 0.64 to 2.14 mumol m(-2). The average electron storage capacity was 1.96 (range 1.25 to 2.4) and 1.16 (range 0.6 to 1.7) for PC and (Cyt f + FeS), respectively, per P700. The best-fit electrochemical midpoint potential differences were 80 mV for the P700/PC and 25 mV for the PC/Cyt f equilibria at 22 degrees C. An algorithm relating the measured 820 nm signal to the redox states of individual PS I donor side electron carriers in leaves is presented. Applying this algorithm to the analysis of steady-state light response curves of net CO(2) fixation rate and 820 nm signal shows that the quantum yield of PS I decreases by about half due to acceptor side reduction at limiting light intensities before the donor side becomes oxidized at saturating intensities. Footnote:

SELECTION OF CITATIONS
SEARCH DETAIL
...