Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20638, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001129

ABSTRACT

The aim of this research was to produce Rayeb milk, a bio-fermented milk product that has important benefits for health and nutrition. The Rayeb milk was divided into five different treatments: T1 from cow milk, T2 from quinoa milk, T3 from a mixture of cow and quinoa milk (50%:50%), T4 from a mixture of cow and quinoa milk (75%:25%), and T5 from a mixture of cow and quinoa milk (25%:75%). As a starting culture, ABT-5 culture was used. The results demonstrated that blending quinoa milk with cow milk increased the total solids, fat, total protein, pH, acetaldehyde, and diacetyl values of the resulting Rayeb milk. Additionally, the total phenolic content, antioxidant activity, minerals, and amino acids-particularly important amino acids-in Rayeb milk with quinoa milk were higher. In Rayeb milk prepared from a cow and quinoa milk mixture, Lactobacillus acidophilus and Bifidobacterium bifidum were highly stimulated. All Rayeb milk samples, particularly those that contained quinoa milk, possessed more bifidobacteria than the recommended count of 106 cfu g-1 for use as a probiotic. Based on the sensory evaluation results, it is possible to manufacture a bio-Rayeb milk acceptable to the consumer and has a high nutritional and health values using a mixture of cow milk and quinoa milk (75%:25% or 50%:50%) and ABT-5 culture.


Subject(s)
Chenopodium quinoa , Cultured Milk Products , Probiotics , Animals , Female , Cattle , Milk/chemistry , Antioxidants/metabolism , Chenopodium quinoa/metabolism , Amino Acids, Essential/metabolism , Fermentation , Cultured Milk Products/microbiology , Lactobacillus acidophilus/metabolism
2.
J Food Sci Technol ; 60(2): 590-599, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36712195

ABSTRACT

In this study, the denatured whey protein paste (DWPP) was used to improve the texture characterizations of Gouda cheese. Five treatments of cheese were manufactured by adding 0, 1, 2, 3 and 4% of DWPP to cheese curd. Fortification of Gouda cheese with DWPP increased values of moisture, salt in moisture, water-soluble nitrogen/total nitrogen and non-protein nitrogen/total nitrogen whereas decreased values of density and free oil. The cheese contained DWPP was lighter and more yellowish compared to the control. The cheese samples contained 1 and 2% DWPP exhibited a significant increase in hardness, cohesiveness, springiness, gumminess and chewiness values while, the cheese samples that contained 3 and 4% DWPP exhibited a significant decrease. Adding DWPP to cheese lowered saturated fatty acids and raised unsaturated fatty acid (USFA) values which partially caused a lowering in cheese hardness at high levels of DWPP because of the low melting points of USFA. Based on these results, supplementation of Gouda cheese with 1 or 2% DWPP improved the texture properties.

SELECTION OF CITATIONS
SEARCH DETAIL