Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130599, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521471

ABSTRACT

BACKGROUND: VEGFR-2 has emerged as a prominent positive regulator of cancer progression. AIM: Discovery of new anticancer agents and apoptotic inducers targeting VEGFR-2. METHODS: Design and synthesis of new thiazolidine-2,4-diones followed by extensive in vitro studies, including VEGFR-2 inhibition assay, MTT assay, apoptosis analysis, and cell migration assay. In silico investigations including docking, MD simulations, ADMET, toxicity, and DFT studies were performed. RESULTS: Compound 15 showed the strongest VEGFR-2 inhibitory activity with an IC50 value of 0.066 µM. Additionally, most of the synthesized compounds showed anti-proliferative activity against HepG2 and MCF-7 cancer cell lines at the micromolar range with IC50 values ranging from 0.04 to 4.71 µM, relative to sorafenib (IC50 = 2.24 ± 0.06 and 3.17 ± 0.01 µM against HepG2 and MCF-7, respectively). Also, compound 15 showed selectivity indices of 1.36 and 2.08 against HepG2 and MCF-7, respectively. Furthermore, compound 15 showed a significant apoptotic effect and arrested the cell cycle of MCF-7 cells at the S phase. Moreover, compound 15 had a significant inhibitory effect on the ability of MCF-7 cells to heal from. Docking studies revealed that the synthesized thiazolidine-2,4-diones have a binding pattern approaching sorafenib. MD simulations indicated the stability of compound 15 in the active pocket of VEGFR-2 for 200 ns. ADMET and toxicity studies indicated an acceptable pharmacokinetic profile. DFT studies confirmed the ability of compound 15 to interact with VEGFR-2. CONCLUSION: Compound 15 has promising anticancer activity targeting VEGFR-2 with significant activity as an apoptosis inducer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Molecular Docking Simulation , Thiazolidinediones , Vascular Endothelial Growth Factor Receptor-2 , Humans , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Thiazolidinediones/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/chemical synthesis , MCF-7 Cells , Hep G2 Cells , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Drug Screening Assays, Antitumor , Sorafenib/pharmacology , Sorafenib/chemistry , Molecular Dynamics Simulation , Cell Movement/drug effects
2.
Heliyon ; 10(2): e24005, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298627

ABSTRACT

In this study, a series of seven novel 2,4-dioxothiazolidine derivatives with potential anticancer and VEGFR-2 inhibiting abilities were designed and synthesized as VEGFR-2 inhibitors. The synthesized compounds were tested in vitro for their potential to inhibit VEGFR-2 and the growth of HepG2 and MCF-7 cancer cell lines. Among the compounds tested, compound 22 (IC50 = 0.079 µM) demonstrated the highest anti-VEGFR-2 efficacy. Furthermore, it demonstrated significant anti-proliferative activities against HepG2 (IC50 = 2.04 ± 0.06 µM) and MCF-7 (IC50 = 1.21 ± 0.04 M). Additionally, compound 22 also increased the total apoptotic rate of the MCF-7 cancer cell lines with cell cycle arrest at S phase. As well, computational methods were applied to study the VEGFR-2-22 complex at the molecular level. Molecular docking and molecular dynamics (MD) simulations were used to investigate the complex's structural and kinetic characteristics. The DFT calculations further revealed the structural and electronic properties of compound 22. Finally, computational ADMET and toxicity tests were performed indicating the likeness of the proposed compounds to be drugs. The results suggest that compound 22 displays promise as an effective anticancer treatment and can serve as a model for future structural modifications and biological investigations in this field.

3.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100580

ABSTRACT

Herin, new nicotinamide candidates were designed and synthesized as VEGFR-2 inhibitors. In vitro antiproliferative activities were assessed against MCF-7, HepG-2 and HCT-116 cancer cell lines. The top cytotoxic members 15a, 15b, 16, 18a, and 18b were estimated against their selected target (VEGFR-2). Further mechanistic tests were studied for the most potent cytotoxic candidate 18a, these studies revealed the ability of compound 18a to hinder the progression of HCT-116 cells at S and Pre-G1phases besides boosting early and late apoptosis. Also compound 18a was found to significantly decrease the levels immunomodulatory proteins TNF-α and IL-6 while showing a four-fold rise in an apoptotic marker caspase-3 when compared to control cells. The therapeutic index of the designed derivatives was evaluated by computational ADMET and toxicity calculations as well as their potentiality to occupy the VEGFR-2 active site was signposted by molecular docking assessments. Finally, molecular dynamic simulation studies of compound 18a-VEGFR-2 complex indicated the high steadiness of compound 18a in the VEGFR-2 active site. This study presents compound 18a as a lead candidate that can be optimized to get a strong VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.

4.
Comput Biol Chem ; 107: 107958, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37714080

ABSTRACT

Novel thiazolidine-2,4-dione derivatives, 11a-g, were designed, and synthesized targeting the VEGFR-2 protein. The in vitro studies indicated the abilities of the synthesized derivatives to inhibit VEGFR-2 and prevent the growth of two different cancer cell types, HepG2 and MCF-7. Compound 11 f exhibited the strongest anti-VEGFR-2 activity (IC50 = 0.053 µM). As well, compound 11 f showed impressive anti-proliferative activity against the mentioned cancer cell lines with IC50 values of 0.64 ± 0.01 and 0.53 ± 0.04 µM, respectively. Additionally, compound 11 f arrested the MCF-7 cell cycle at the S phase and increased the overall apoptosis percentage. Furthermore, cell migration assay revealed that compound 11 f has a significant ability to prevent migration and healing potentialities of MCF-7. Moreover, computational studies were used to conduct the molecular investigation of the VEGFR-2-11 f complex. The kinetic and structural features of the complex were examined using molecular dynamics simulations and molecular docking. Besides, Principal component analysis (PCA) was used to explain the dynamics of the VEGFR-2-11 f complex at various spatial scales. The DFT calculations also provided further clarity regarding compound 11 f's structural and electronic features. To evaluate how closely the developed compounds might look like drugs, ADMET and toxicity experiments were computed. To conclude, the presented study demonstrates the potential of compound 11 f as a viable anti-cancer drug, which can serve as a prototype for future structural modifications and further biological investigations.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Phosphorylation , Protein Kinase Inhibitors , Structure-Activity Relationship , Thiazolidines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
5.
RSC Adv ; 13(40): 27801-27827, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37731835

ABSTRACT

In this study, novel VEGFR-2-targeting thiazolidine-2,4-dione derivatives with potential anticancer properties were designed and synthesized. The ability of the designed derivatives to inhibit VEGFR-2 and stop the growth of three different cancer cell types (HT-29, A-549, and HCT-116) was examined in vitro. The IC50 value of compound 15, 0.081 µM, demonstrated the best anti-VEGFR-2 potency. Additionally, compound 15 showed remarkable anti-proliferative activities against the tested cancer cell lines, with IC50 values ranging from 13.56 to 17.8 µM. Additional flow cytometric investigations showed that compound 15 increased apoptosis in HT-29 cancer cells (from 3.1% to 31.4%) arresting their growth in the S phase. Furthermore, compound 15's apoptosis induction in the same cell line was confirmed by increasing the levels of BAX (4.8-fold) and decreasing Bcl-2 (2.8-fold). Also, compound 15 noticeably increased caspase-8 and caspase-9 levels by 1.7 and 3.2-fold, respectively. Computational methods were used to perform molecular analysis of the VEGFR-2-15 complex. Molecular dynamics simulations and molecular docking were utilized to analyze the complex's kinetic and structural characteristics. Protein-ligand interaction profiler analysis (PLIP) determined the 3D interactions and binding conformation of the VEGFR-2-15 complex. DFT analyses also provided insights into the 3D geometry, reactivity, and electronic characteristics of compound 15. Computational ADMET and toxicity experiments were conducted to determine the potential of the synthesized compounds for therapeutic development. The study's findings suggest that compound 15 might be an effective anticancer lead compound and could guide future attempts to develop new drugs.

6.
Future Med Chem ; 15(14): 1233-1250, 2023 07.
Article in English | MEDLINE | ID: mdl-37466069

ABSTRACT

Background: VEGFR-2 is one of the most effective targets in cancer treatment. Aim: The design and semi-synthesis of new theobromine derivatives as potential VEGFR-2 inhibitors. Methods: In vitro and in silico evaluation of the synthesized compounds. Results: Compound 5b demonstrated excellent antiproliferative and VEGFR-2 inhibitory effects with significant apoptotic activity. It modulated the immune response by increasing IL-2 and reducing TNF-α levels. Docking and molecular dynamics simulations revealed the compound's binding affinity with VEGFR-2. Lastly, computational absorption, distribution, metabolism, excretion and toxicity studies indicated the high potential of compound 5b for drug development. Conclusion: Compound 5b could be a promising anticancer agent targeting VEGFR-2.


Subject(s)
Antineoplastic Agents , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship , Theobromine/pharmacology , Vascular Endothelial Growth Factor Receptor-2 , Protein Kinase Inhibitors/pharmacology , Cell Proliferation , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Drug Design
7.
J Biomol Struct Dyn ; : 1-20, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37261471

ABSTRACT

Vascular endothelial cell proliferation and angiogenesis are all crucially impacted by Endothelial Growth Factor Receptor-2 (VEGFR-2). Its expression is significantly boosted throughout pathologic angiogenesis causing the development of tumors. Sothat, inhibition of VEGFR-2 has crucial role in cancer treatment. In this study, novel semisynthetic theobromine derivatives were rationally designed as VEGFR-2 inhibitors and subjected to in vitro testing for their ability to block VEGFR-2 activation. Furthermore, the antiproliferative effects of these derivatives were evaluated. Compound 7 g exhibited the most potent anti-VEGFR-2 activity, with an IC50 value of 0.072 µM, and demonstrated excellent dose-dependent inhibitory activity against both MCF-7 and HepG2 cancer cells with IC50 values of 19.35 and 27.89 µM, respectively. Notably, compound 7 g exhibited high selectivity indices of 2.6 and 1.8 against MCF-7 and HepG2 cells, respectively. Compound 7 g induced G2/M phase cell cycle arrest, promoted apoptosis, and boosted immunomodulation by downregulating TNF-α expression and upregulating IL-2 levels in MCF-7 cells. The molecular docking analysis revealed that compound 7 g could bind effectively to the active site of VEGFR-2, and molecular dynamic simulations confirmed the stability of the VEGFR-2/compound 7 g complex. Furthermore, ADME and toxicity profiling indicated the potential suitability of these compounds as drug candidates. In summary, compound 7 g hold promise as a VEGFR-2 inhibitor.Communicated by Ramaswamy H. Sarma.

8.
Molecules ; 27(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35956997

ABSTRACT

This work is one of our efforts to discover potent anticancer agents. We modified the most promising derivative of our previous work concerned with the development of VEGFR-2 inhibitor candidates. Thirteen new compounds based on benzoxazole moiety were synthesized and evaluated against three human cancer cell lines, namely, breast cancer (MCF-7), colorectal carcinoma (HCT116), and hepatocellular carcinoma (HepG2). The synthesized compounds were also evaluated against VEGFR-2 kinase activity. The biological testing fallouts showed that compound 8d was more potent than standard sorafenib. Such compound showed IC50 values of 3.43, 2.79, and 2.43 µM against the aforementioned cancer cell lines, respectively, compared to IC50 values of 4.21, 5.30, and 3.40 µM reported for sorafenib. Compound 8d also was found to exert exceptional VEGFR-2 inhibition activity with an IC50 value of 0.0554 µM compared to sorafenib (0.0782 µM). In addition, compound 8h revealed excellent cytotoxic effects with IC50 values of 3.53, 2.94, and 2.76 µM against experienced cell lines, respectively. Furthermore, compounds 8a and 8e were found to inhibit VEGFR-2 kinase activity with IC50 values of 0.0579 and 0.0741 µM, exceeding that of sorafenib. Compound 8d showed a significant apoptotic effect and arrested the HepG2 cells at the pre-G1 phase. In addition, it exerted a significant inhibition for TNF-α (90.54%) and of IL-6 (92.19%) compared to dexamethasone (93.15%). The molecular docking studies showed that the binding pattern of the new compounds to VEGFR-2 kinase was similar to that of sorafenib.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Apoptosis , Benzoxazoles/chemistry , Cell Proliferation , Drug Design , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Sorafenib/pharmacology , Structure-Activity Relationship
9.
J Enzyme Inhib Med Chem ; 37(1): 2206-2222, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35980113

ABSTRACT

New nicotinamide derivatives 6, 7, 10, and 11 were designed and synthesised based on the essential features of the VEGFR-2 inhibitors. Compound 10 revealed the highest anti-proliferative activities with IC50 values of 15.4 and 9.8 µM against HCT-116 and HepG2, respectively compared to sorafenib (IC50 = 9.30 and 7.40 µM). Compound 7 owned promising cytotoxic activities with IC50 values of 15.7 and 15.5 µM against the same cell lines, respectively. Subsequently, the VEGFR-2 inhibitory activities were assessed for the titled compounds to exhibit VEGFR-2 inhibition with sub-micromolar IC50 values. Moreover, compound 7 induced the cell cycle cessation at the cycle at %G2-M and G0-G1phases, and induced apoptosis in the HCT-116. Compounds 7 and 10 reduced the levels of TNF-α by 81.6 and 84.5% as well as IL-6 by 88.4 and 60.9%, respectively, compared to dexamethasone (82.4 and 93.1%). In silico docking, molecular dynamics simulations, ADMET, and toxicity studies were carried out.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Niacinamide/pharmacology , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
10.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955547

ABSTRACT

Among a group of 310 natural antiviral natural metabolites, our team identified three compounds as the most potent natural inhibitors against the SARS-CoV-2 main protease (PDB ID: 5R84), Mpro. The identified compounds are sattazolin and caprolactin A and B. A validated multistage in silico study was conducted using several techniques. First, the molecular structures of the selected metabolites were compared with that of GWS, the co-crystallized ligand of Mpro, in a structural similarity study. The aim of this study was to determine the thirty most similar metabolites (10%) that may bind to the Mpro similar to GWS. Then, molecular docking against Mpro and pharmacophore studies led to the choice of five metabolites that exhibited good binding modes against the Mpro and good fit values against the generated pharmacophore model. Among them, three metabolites were chosen according to ADMET studies. The most promising Mpro inhibitor was determined by toxicity and DFT studies to be caprolactin A (292). Finally, molecular dynamics (MD) simulation studies were performed for caprolactin A to confirm the obtained results and understand the thermodynamic characteristics of the binding. It is hoped that the accomplished results could represent a positive step in the battle against COVID-19 through further in vitro and in vivo studies on the selected compounds.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism
11.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807326

ABSTRACT

VEGFR-2, the subtype receptor tyrosine kinase (RTK) responsible for angiogenesis, is expressed in various cancer cells. Thus, VEGFER-2 inhibition is an efficient approach for the discovery of new anticancer agents. Accordingly, a new set of nicotinamide derivatives were designed and synthesized to be VEGFR-2 inhibitors. The chemical structures were confirmed using IR, 1H-NMR, and 13C-NMR spectroscopy. The obtained compounds were examined for their anti-proliferative activities against the human cancer cell lines (HCT-116 and HepG2). VEGFR-2 inhibitory activities were determined for the titled compounds. Compound 8 exhibited the strongest anti-proliferative activities with IC50 values of 5.4 and 7.1 µM against HCT-116 and HepG2, respectively. Interestingly, compound 8 was the most potent VEGFR-2 inhibitor with an IC50 value of 77.02 nM (compare to sorafenib: IC50 = 53.65 nM). Treatment of HCT-116 cells with compound 8 produced arrest of the cell cycle at the G0-G1 phase and a total apoptosis increase from 3.05 to 19.82%-6.5-fold in comparison to the negative control. In addition, compound 8 caused significant increases in the expression levels of caspase-8 (9.4-fold) and Bax (9.2-fold), and a significant decrease in the Bcl-2 expression level (3-fold). The effects of compound 8 on the levels of the immunomodulatory proteins (TNF-α and IL-6) were examined. There was a marked decrease in the level of TNF-α (92.37%) compared to the control (82.47%) and a non-significant reduction in the level of IL-6. In silico docking, molecular dynamics simulations, and MM-PBSA studies revealed the high affinity, the correct binding, and the optimum dynamics of compound 8 inside the active site of VEGFR-2. Finally, in silico ADMET and toxicity studies indicated acceptable values of drug-likeness. In conclusion, compound 8 has emerged as a promising anti-proliferative agent targeting VEGFR-2 with significant apoptotic and immunomodulatory effects.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Interleukin-6/pharmacology , Molecular Docking Simulation , Molecular Structure , Niacinamide/pharmacology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/pharmacology
12.
Arch Pharm (Weinheim) ; 355(10): e2200133, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35822666

ABSTRACT

In continuation of our previous efforts in the field of design and synthesis of vascular endothelial growth factor receptor (VEGFR)-2 inhibitors, a new series of [1,2,4]triazolo[4,3-c]quinazoline derivatives were designed and synthesized as modified analogs of some reported VEGFR-2 inhibitors. The synthesized compounds were designed to have the essential pharmacophoric features of VEGFR-2 inhibitors. Antiproliferative activities of the synthesized compounds were investigated against two tumor cell lines (HepG2 and HCT-116) using sorafenib as a positive control. Compound 10k emerged as the most promising antiproliferative agent with IC50 values of 4.88 and 5.21 µM against HepG2 and HCT-116 cells, respectively. Also, it showed the highest inhibitory activity against VEGFR-2 with an IC50 value of 53.81 nM compared to sorafenib (IC50 = 44.34 nM). Cell cycle analysis revealed that compound 10k can arrest HepG2 cells at both the S and G2/M phases. In addition, this compound produced a tenfold increase in apoptotic cells compared to the control. Furthermore, the effect of compound 10k on the expression level of BAX, Bcl-2, and caspase-3 was assessed. This compound caused a 3.35-fold increase in BAX expression levels and a 1.25-fold reduction in Bcl-2 expression levels. The BAX/Bcl-2 ratio was calculated to be 4.57, indicating a promising apoptotic effect. It also showed a significant increase in the level of caspase-3 (4.12-fold) compared to the control cells. In silico docking, absorption, distribution, metabolism, excretion, and toxicity, and toxicity studies were performed for the synthesized compounds to investigate their binding patterns against the proposed biological target (VEGFR-2) and to assess the drug-likeness characters.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Apoptosis , Caspase 3/metabolism , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Protein Kinase Inhibitors , Quinazolines/pharmacology , Sorafenib/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/pharmacology , bcl-2-Associated X Protein/pharmacology
13.
J Enzyme Inhib Med Chem ; 37(1): 2063-2077, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35875937

ABSTRACT

In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 µM and 15.21 µM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Apoptosis , Benzoxazoles , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors , Structure-Activity Relationship
14.
J Enzyme Inhib Med Chem ; 37(1): 1587-1599, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35637622

ABSTRACT

A novel series of 2-thioacetamide linked benzoxazole-benzamide conjugates 1-15 was designed as potential inhibitors of the vascular endothelial growth factor receptor-2 (VEGFR-2). The prepared compounds were evaluated for their potential antitumor activity and their corresponding selective cytotoxicity was estimated using normal human fibroblast (WI-38) cells. Compounds 1, 9-12 and 15 showed good selectivity and displayed excellent cytotoxic activity against both HCT-116 and MCF-7 cancer cell lines compared to sorafenib, used as a reference compound. Furthermore, compounds 1 and 11 showed potent VEGFR-2 inhibitory activity. The cell cycle progression assay showed that 1 and 11 induced cell cycle arrest at G2/M phase, with a concomitant increase in the pre-G1 cell population. Further pharmacological studies showed that 1 and 11 induced apoptosis and inhibited the expression of the anti-apoptotic Bcl-2 and Bcl-xL proteins in both cell lines. Therefore, compounds 1 and 11 might serve as promising candidates for future anticancer therapy development.


Subject(s)
Benzoxazoles , Vascular Endothelial Growth Factor Receptor-2 , Apoptosis , Benzamides/pharmacology , Benzoxazoles/pharmacology , Drug Design , Fibroblasts , HCT116 Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
15.
J Enzyme Inhib Med Chem ; 37(1): 1556-1567, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35635148

ABSTRACT

Sixteen [1, 2, 4]triazolo[4,3-a]quinoxalines as DNA intercalators-Topo II inhibitors have been prepared and their anticancer actions evaluated towards three cancer cell lines. The new compounds affected on high percentage of MCF-7. Derivatives 7e, 7c and 7b exhibited the highest anticancer activities. Their activities were higher than that of doxorubicin. Molecular docking studies showed that the HBA present in the chromophore, the substituted distal phenyl moiety and the extended linkers enable our derivatives to act as DNA binders. Also, the pyrazoline moiety formed six H-bonds and improved affinities with DNA active site. Finally, 7e, 7c and 7b exhibited the highest DNA affinities and act as traditional intercalators of DNA. The most active derivatives 7e, 7c, 7b, 7g and 6e were subjected to evaluate their Topo II inhibition and DNA binding actions. Derivative 7e exhibited the highest binding affinity. It intercalates DNA at IC50 = 29.06 µM. Moreover, compound 7e potently intercalates DNA at an IC50 value of 31.24 µM. Finally, compound 7e demonstrated the most potent Topo II inhibitor at a value of 0.890 µM. Compound 7c exhibited an equipotent IC50 value (0.940 µM) to that of doxorubicin. Furthermore, derivatives 7b, 7c, 7e and 7g displayed a high ADMET profile.


Subject(s)
Intercalating Agents , Topoisomerase II Inhibitors , DNA , DNA Topoisomerases, Type II/metabolism , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Intercalating Agents/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
16.
J Enzyme Inhib Med Chem ; 37(1): 397-410, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34961427

ABSTRACT

A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzoxazoles/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Mol Divers ; 26(4): 1915-1932, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34460053

ABSTRACT

Vascular endothelial growth factor receptor-2 (VEGFR-2) is critically involved in cancer angiogenesis. Blocking of VEGFR-2 signaling pathway proved effective suppression of tumor growth. Accordingly, two series of new triazoloquinoxaline-based derivatives were designed and synthesized as VEGFR-2 inhibitors. All in vitro cytotoxic activities of the synthesized compounds were evaluated against two human cancer cell lines (MCF-7 and HepG2). To confirm the potential mechanism of cytotoxicity, enzymatic assays against VEGFR-2 were estimated for all the target compounds. The results of VEGFR-2 inhibitory activity and cytotoxicity were in high correlation. Compound 22a exhibited the highest cytotoxic effect with IC50 values of 6.2 and 4.9 µM against MCF-7 and HepG2, respectively, comparing to sorafenib (IC50 = 3.53 and 2.18 µM). Such derivative showed the best VEGFR-2 inhibitory activity with an IC50 value of 3.9 nM, which is very close to that of sorafenib (IC50 = 3.13 nM). Moreover, compounds 22b, 23b, and 23e exhibited strong cytotoxic activity with IC50 values ranging from 11.7 to 15.3 µM. Also, these compounds showed promising VEGFR-2 inhibition with IC50 values of 4.2, 5.7, and 4.7 nM, respectively. In silico docking, ADMET, and toxicity studies were carried out for the synthesized compounds. The results revealed that some compounds have a good binding mode against VEGFR-2 and a high level of drug-likeness.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Quinoxalines/pharmacology , Sorafenib/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/pharmacology
18.
Arch Pharm (Weinheim) ; 355(2): e2100359, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34862634

ABSTRACT

Twelve new triazolo[4,3-a]quinoxaline-based compounds are reported as anticancer agents with potential effects against vascular endothelial growth factor receptor-2 (VEGFR-2), using sorafenib as a reference molecule. With sorafenib as the positive control, the antiproliferative effects of the synthesized compounds against MCF-7 and HepG2 cells, as well as their VEGFR-2-inhibitory activities, were assessed. The most powerful VEGFR-2 inhibitor was compound 14a, which had an IC50 value of 3.2 nM, which is very close to that of sorafenib (IC50 = 3.12 nM). Furthermore, compounds 14c and 15d showed potential inhibitory activity against VEGFR-2, with IC50 values of 4.8 and 5.4 nM, respectively. Compound 14a caused apoptosis in HepG2 cells and stopped the cell cycle at the G2/M phase. In HepG2 cells, it also increased the levels of the proteases caspase-3 and caspase-9, as well as the Bax/Bcl-2 ratio. In silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) and toxicity experiments revealed that the synthesized agents had acceptable drug-likeness.


Subject(s)
Antineoplastic Agents/pharmacology , Quinoxalines/pharmacology , Triazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Computer Simulation , Female , Hep G2 Cells , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Mice , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Rats , Sorafenib/pharmacology , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
19.
J Enzyme Inhib Med Chem ; 36(1): 1760-1782, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34340610

ABSTRACT

Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a critical role in cancer angiogenesis. Inhibition of VEGFR-2 activity proved effective suppression of tumour propagation. Accordingly, two series of new 3-methylquinoxaline derivatives have been designed and synthesised as VEGFR-2 inhibitors. The synthesised derivatives were evaluated in vitro for their cytotoxic activities against MCF-7and HepG2 cell lines. In addition, the VEGFR-2 inhibitory activities of the target compounds were estimated to indicate the potential mechanism of their cytotoxicity. To a great extent, the results of VEGFR-2 inhibition were highly correlated with that of cytotoxicity. Compound 27a was the most potent VEGFR-2 inhibitor with IC50 of 3.2 nM very close to positive control sorafenib (IC50 = 3.12 nM). Such compound exhibited a strong cytotoxic effect against MCF-7 and HepG2, respectively with IC50 of 7.7 and 4.5 µM in comparison to sorafenib (IC50 = 3.51 and 2.17 µM). In addition, compounds 28, 30f, 30i, and 31b exhibited excellent VEGFR-2 inhibition activities (IC50 range from 4.2 to 6.1 nM) with promising cytotoxic activity. Cell cycle progression and apoptosis induction were investigated for the most active member 27a. Also, the effect of 27a on the level of caspase-3, caspase-9, and BAX/Bcl-2 ratio was determined. Molecular docking studies were implemented to interpret the binding mode of the target compounds with the VEGFR-2 pocket. Furthermore, toxicity and ADMET calculations were performed for the synthesised compounds to study their pharmacokinetic profiles.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Design , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation
20.
J Enzyme Inhib Med Chem ; 36(1): 1093-1114, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34056992

ABSTRACT

Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Quinoxalines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...