Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
2.
Nat Mater ; 23(8): 1041-1047, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871940

ABSTRACT

Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions. Here we demonstrate such a measurement of CuIr2S4 optically pumped from its low-temperature Ir-dimerized phase. Dimers are optically suppressed without spatial correlation, generating a structure whose level of disorder strongly depends on the length scale. The redevelopment of structural ordering over tens of picoseconds is directly tracked over both space and time as a transient state is approached. This measurement demonstrates the crucial role of local structure and disorder in non-equilibrium processes as well as the feasibility of accessing this information with state-of-the-art XFEL facilities.

3.
Chem Mater ; 36(6): 2756-2766, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38558915

ABSTRACT

Water is one of the most reactive and abundant molecules on Earth, and it is thus crucial to understand its reactivity with various material families. One of the big unknown questions is how water in liquid and vapor forms impact the fast-emerging class of metal-organic frameworks (MOFs). Here, we discover that high-pressure water vapor drastically modifies the structure and hence the dynamic, thermodynamic, and mechanical properties of MOF glasses. In detail, we find that an archetypical MOF (ZIF-62) is extremely sensitive to heat treatments performed at 460 °C and water vapor pressures up to ∼110 bar. Both the melting and glass transition temperatures decrease remarkably (by >100 °C), and simultaneously, hardness and Young's modulus increase by up to 100% under very mild treatment conditions (<20 bar of hydrothermal pressure). Structural analyses suggest water to partially coordinate to Zn in the form of a hydroxide ion by replacing a bridging imidazolate-based linker. The work provides insight into the role of hot-compressed water in influencing the structure and properties of MOF glasses and opens a new route for systematically changing the thermodynamics and kinetics of MOF liquids and thus altering the thermal and mechanical properties of the resulting MOF glasses.

4.
Sci Rep ; 14(1): 7788, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565571

ABSTRACT

Neanderthals occupied Western Eurasia between 350 ka and 40 ka ago, during the climatically volatile Pleistocene. A key issue is to what extent Neanderthal populations expanded into areas of Western Eurasia and what conditions facilitated such range expansions. The range extent of Neanderthals is generally based on the distribution of Neanderthal material, but the land-altering nature of glacial periods has erased much of the already sparse material evidence of Neanderthals, particularly in the northern latitudes. To overcome this obstacle species distribution models can estimate past distributions of Neanderthals, however, most implementations are generally constrained spatially and temporally and may be artificially truncating the Neanderthal niche space. Using dated contexts from Neanderthal sites from across Western Eurasia, millennial-scale paleoclimate reconstructions, and a spatiotemporal species distribution model, we infer the fundamental climatic niche space of Neanderthals and estimate the extent of Neanderthal occupation. We find that (a.) despite the long timeframe, Neanderthals occupy a relatively narrow fundamental climatic niche space, (b.) the estimated projected potential Neanderthal niche space suggests a larger geographic range than the material record suggests, and (c.) that there was a general decline in the size of the projected potential Neanderthal niche from 145 ka ago onward, possibly contributing to their extinction.


Subject(s)
Neanderthals , Animals , Fossils
5.
IUCrJ ; 10(Pt 6): 656-661, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37903100

ABSTRACT

X-ray structural science is undergoing a revolution driven by the emergence of X-ray Free-electron Laser (XFEL) facilities. The structures of crystalline solids can now be studied on the picosecond time scale relevant to phonons, atomic vibrations which travel at acoustic velocities. In the work presented here, X-ray diffuse scattering is employed to characterize the time dependence of the liquid phase emerging from femtosecond laser-induced melting of polycrystalline gold thin films using an XFEL. In a previous analysis of Bragg peak profiles, we showed the supersonic disappearance of the solid phase and presented a model of pumped hot electrons carrying energy from the gold surface to scatter at internal grain boundaries. This generates melt fronts propagating relatively slowly into the crystal grains. By conversion of diffuse scattering to a partial X-ray pair distribution function, we demonstrate that it has the characteristic shape obtained by Fourier transformation of the measured F(Q). The diffuse signal fraction increases with a characteristic rise-time of 13 ps, roughly independent of the incident pump fluence and consequent final liquid fraction. This suggests the role of further melt-front nucleation processes beyond grain boundaries.

6.
Trop Anim Health Prod ; 55(5): 317, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737938

ABSTRACT

Haemonchus contortus (H. contortus) is one of the most prevalent gastrointestinal nematodes, causing health problems and economic losses in ruminants. Nanotechnology holds great promise as a field of science, with potential applications in veterinary medicine. This study investigated the in vitro anthelmintic activity of silver nanoparticles (AgNPs), selenium nanoparticles (SeNPs), and pomegranate peel extract (Punica granatum; PPE) on different stages of H. contortus: eggs, larvae, and adults. The in vitro anthelmintic efficacy was evaluated using the egg hatching inhibition assay (EHA), the third larval stage paralysis assay (LPA), and the adult worm motility inhibition assay (WMI). Six dilutions of PPE were utilized for EHA, LPA, and WMI, ranging from 0.25 to 6 mg/ml. AgNPs dilutions ranged from 0.00001 to 1.0 µg/ml for EHA and LPA and 1 to 25 µg/ml for WMI. SeNPs were utilized at dilutions of 1, 5, 10, and 15 µg/ml for EHA, LPA, and WMI. The results showed that the lowest concentration of AgNPs, SeNPs, and PPE significantly inhibited egg hatching. To further assess larvicidal activity, AgNPs at the highest concentration of 1 µg/ml induced a strong larvicidal effect, as did SeNPs at the lowest concentration. On the contrary, PPE displayed a significant larvicidal effect at 1 mg/ml compared to the control. The percentage mortality of adult H. contortus was measured as follows (mortality (%) = the number of dead adult H. contortus/total number of adult H. contortus per test × 100). The death of the adult H. contortus was determined by the absence of motility. Adult H. contortus mortality percentage was also significantly affected by all three agents when compared to the control. The AgNPs, SeNPs, and PPE have effective antiparasitic activity on gastrointestinal parasitic nematodes. These results provide evidence of the excellent antiparasitic properties of AgNPs, SeNPs, and PPE, demonstrating their effectiveness in controlling eggs, larvae, and adult H. contortus in vitro.


Subject(s)
Anthelmintics , Anti-Infective Agents , Haemonchus , Metal Nanoparticles , Pomegranate , Selenium , Animals , Antiparasitic Agents , Selenium/pharmacology , Silver/pharmacology , Ovum , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Larva , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
7.
Acta Crystallogr A Found Adv ; 79(Pt 5): 412-426, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37490406

ABSTRACT

The local structural characterization of iron oxide nanoparticles is explored using a total scattering analysis method known as pair distribution function (PDF) (also known as reduced density function) analysis. The PDF profiles are derived from background-corrected powder electron diffraction patterns (the e-PDF technique). Due to the strong Coulombic interaction between the electron beam and the sample, electron diffraction generally leads to multiple scattering, causing redistribution of intensities towards higher scattering angles and an increased background in the diffraction profile. In addition to this, the electron-specimen interaction gives rise to an undesirable inelastic scattering signal that contributes primarily to the background. The present work demonstrates the efficacy of a pre-treatment of the underlying complex background function, which is a combination of both incoherent multiple and inelastic scatterings that cannot be identical for different electron beam energies. Therefore, two different background subtraction approaches are proposed for the electron diffraction patterns acquired at 80 kV and 300 kV beam energies. From the least-square refinement (small-box modelling), both approaches are found to be very promising, leading to a successful implementation of the e-PDF technique to study the local structure of the considered nanomaterial.

8.
Acta Crystallogr A Found Adv ; 78(Pt 6): 515, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36318075

ABSTRACT

The name of the third author of the article by Koch et al. [Acta Cryst. (2021). A77, 611-636] is corrected.

9.
R Soc Open Sci ; 9(9): 220018, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36117868

ABSTRACT

The modelling of pandemics has become a critical aspect in modern society. Even though artificial intelligence can help the forecast, the implementation of ordinary differential equations which estimate the time development in the number of susceptible, (exposed), infected and recovered (SIR/SEIR) individuals is still important in order to understand the stage of the pandemic. These models are based on simplified assumptions which constitute approximations, but to what extent this are erroneous is not understood since many factors can affect the development. In this paper, we introduce an agent-based model including spatial clustering and heterogeneities in connectivity and infection strength. Based on Danish population data, we estimate how this impacts the early prediction of a pandemic and compare this to the long-term development. Our results show that early phase SEIR model predictions overestimate the peak number of infected and the equilibrium level by at least a factor of two. These results are robust to variations of parameters influencing connection distances and independent of the distribution of infection rates.

10.
Inorg Chem ; 61(32): 12797-12808, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35913893

ABSTRACT

Two-dimensional iron chalcogenide intercalates display a remarkable correlation of the interlayer spacing with enhancement of the superconducting critical temperature (Tc). In this work, synchrotron X-ray absorption (XAS; at the Fe and Se K-edges) and emission (XES; at the Fe Κß) spectroscopies allow one to discuss how the important rise of Tc (∼44 K) in the molecule-intercalated Lix(C5H5N)yFe2-zSe2 relates to the electronic and local structural changes felt by the inorganic host upon doping (x). XES shows that widely separated layers of edge-sharing FeSe4 tetrahedra carry low-spin moieties, with a local Fe magnetic moment slightly reduced compared to the parent ß-Fe2-zSe2. Pre-edge XAS expresses the progressively reduced mixing of metal 3d-4p states upon lithiation. Doping-mediated local lattice modifications, probed by conventional Tc optimization measures (cf. the anion height and FeSe4 tetrahedra regularity), become less relevant when layers are spaced far away. On the basis of extended X-ray absorption fine structure, such distortions are compensated by a softer Fe network that relates to Fe-site vacancies, alleviating electron-lattice correlations and superconductivity. Density functional theory (DFT) guided modification of the isolated Fe2-zSe2 (z, vacant sites) planes, resembling the host layers, identify that Fe-site deficiency occurs at low energy cost, giving rise to stretched Fe sheets, in accordance with experiments. The robust high-Tc in Lix(C5H5N)yFe2-zSe2, arises from the interplay of electron-donating spacers and the iron selenide layer's tolerance to defect chemistry, a tool to favorably tune its Fermi surface properties.

11.
Allergy ; 77(10): 2909-2923, 2022 10.
Article in English | MEDLINE | ID: mdl-35809082

ABSTRACT

Allergy and respiratory disorders are common in young athletic individuals. In the context of elite sport, it is essential to secure an accurate diagnosis in order to optimize health and performance. It is also important, however, to consider the potential impact or consequences of these disorders, in recreationally active individuals engaging in structured exercise and/or physical activity to maintain health and well-being across the lifespan. This EAACI Task Force was therefore established, to develop an up-to-date, research-informed position paper, detailing the optimal approach to the diagnosis and management of common exercise-related allergic and respiratory conditions. The recommendations are informed by a multidisciplinary panel of experts including allergists, pulmonologists, physiologists and sports physicians. The report is structured as a concise, practically focussed document, incorporating diagnostic and treatment algorithms, to provide a source of reference to aid clinical decision-making. Throughout, we signpost relevant learning resources to consolidate knowledge and understanding and conclude by highlighting future research priorities and unmet needs.


Subject(s)
Hypersensitivity , Respiration Disorders , Respiratory Tract Diseases , Sports , Advisory Committees , Exercise , Humans , Hypersensitivity/diagnosis , Hypersensitivity/etiology , Hypersensitivity/therapy , Respiration Disorders/diagnosis , Respiration Disorders/etiology , Respiration Disorders/therapy , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/therapy
12.
Adv Mater ; 34(24): e2202255, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35412675

ABSTRACT

Typically, conventional structure transitions occur from a low symmetry state to a higher symmetry state upon warming. In this work, an unexpected local symmetry breaking in the tetragonal diamondoid compound AgGaTe2 is reported, which, upon warming, evolves continuously from an undistorted ground state to a locally distorted state while retaining average crystallographic symmetry. This is a rare phenomenon previously referred to as emphanisis. This distorted state, caused by the weak sd3 orbital hybridization of tetrahedral Ag atoms, causes their displacement off the tetrahedron center and promotes a global distortion of the crystal structure resulting in strong acoustic-optical phonon scattering and an ultralow lattice thermal conductivity of 0.26 W m-1 K-1 at 850 K in AgGaTe2 . The findings explain the underlying reason for the unexpectedly low thermal conductivities of silver-based compounds compared to copper-based analogs and provide a guideline to suppressing heat transport in diamondoid and other materials.

13.
Inorg Chem ; 61(10): 4350-4360, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35212536

ABSTRACT

A time-resolved synchrotron X-ray total scattering study sheds light on the evolution of the different structural length scales involved during the intercalation of the layered iron-selenide host by organic molecular donors, aiming at the formation of the expanded-lattice Lix(C5H5N)yFe2-zSe2 hybrid superconductor. The intercalates are found to crystallize in the tetragonal ThCr2Si2-type structure at the average level, however, with an enhanced interlayer iron-selenide spacing (d = 16.2 Å) that accommodates the heterocyclic molecular spacers. Quantitative atomic pair distribution function (PDF) analysis at variable times suggests distorted FeSe4 tetrahedral local environments that appear swollen with respect to those in the parent ß-FeSe. Simultaneously acquired in situ synchrotron X-ray powder diffraction data disclose that secondary phases (α-Fe and Li2Se) grow significantly when a higher lithium concentration is used in the solvothermal reaction or when the solution is aged. These observations are in line with the strongly reducing character of the intercalation medium's solvated electrons that mediate the defect chemistry of the expanded-lattice superconductor. In the latter, intralayer correlated local distortions indicate electron-donating aspects that reflect in somewhat enlarged Fe-Se bonds. They also reveal a degree of relief of chemical pressure associated with a large distance between Fe and Se sheets ("taller" anion height) and a stretched Fe-Fe square planar topology. The elongation of the latter, derived from the in situ PDF study, speaks for a plausible increase in the Fe-site vacancy concentration. The evolution of the local structural parameters suggests an optimum reaction window where kinetically stabilized phases resemble the distortions of the edge-sharing Fe-Se tetrahedra, required for a high-Tc in expanded-lattice iron-chalcogenides.

14.
Nanoscale ; 14(2): 382-401, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34935014

ABSTRACT

The effects of cobalt incorporation in spherical heterostructured iron oxide nanocrystals (NCs) of sub-critical size have been explored by colloidal chemistry methods. Synchrotron X-ray total scattering methods suggest that cobalt (Co) substitution in rock salt iron oxide NCs tends to remedy their vacant iron sites, offering a higher degree of resistance to oxidative conversion. Self-passivation still creates a spinel-like shell, but with a higher volume fraction of the rock salt Co-containing phase in the core. The higher divalent metal stoichiometry in the rock salt phase, with increasing Co content, results in a population of unoccupied tetrahedral metal sites in the spinel part, likely through oxidative shell creation, involving an ordered defect-clustering mechanism, directly correlated to core stabilization. To shed light on the effects of Co-substitution and atomic-scale defects (vacant sites), Monte Carlo simulations suggest that the designed NCs, with desirable, enhanced magnetic properties (cf. exchange bias and coercivity), are developed with magnetocrystalline anisotropy which increases due to a relatively low content of Co ions in the lattice. The growth of optimally performing candidates combines also a strongly exchange-coupled system, secured through a high volumetric ratio rock salt phase, interfaced by a not so defective spinel shell. In view of these requirements, specific absorption rate (SAR) calculations demonstrate that the rock salt core sufficiently protected from oxidation and the heterostructure preserved over time, play a key role in magnetically mediated heating efficacies, for potential use of such NCs in magnetic hyperthermia applications.

15.
Br J Sports Med ; 56(1): 4-11, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34340972

ABSTRACT

OBJECTIVES: To report COVID-19 illness pattern, symptom duration and time loss in UK elite athletes. METHODS: Observational, clinical and database review of athletes with symptomatic COVID-19 illness managed within the UK Sports Institutes. Athletes were classified as confirmed (positive SARS-CoV-2 PCR or antibody tests) or probable (consistent clinical features) COVID-19. Clinical presentation was characterised by the predominant symptom focus (eg, upper or lower respiratory illness). Time loss was defined as days unavailable for full sport participation and comparison was made with a 2016-2019 respiratory illness dataset from the same surveillance system. RESULTS: Between 24 February 2020 and 18 January 2021, 147 athletes (25 Paralympic (17%)) with mean (SD) age 24.7 (5.2) years, 37% female, were diagnosed with COVID-19 (76 probable, 71 confirmed). Fatigue was the most prevalent symptom (57%), followed by dry cough (50%) and headache (46%). The median (IQR) symptom duration was 10 (6-17) days but 14% reported symptoms >28 days. Median time loss was 18 (12-30) days, with 27% not fully available >28 days from initial date of infection. This was greater than our historical non-COVID respiratory illness comparator; 6 days, 0-7 days (p<0.001) and 4% unavailable at 28 days. A lower respiratory phenotype (ie, including dyspnoea±chest pain±cough±fever) was present in 18% and associated with a higher relative risk of prolonged symptoms risk ratio 3.0 (95% CI: 1.4 to 6.5) and time loss 2.1 (95% CI: 1.2 to 3.5). CONCLUSIONS: In this cohort, COVID-19 largely resulted in a mild, self-limiting illness. The presence of lower respiratory tract features was associated with prolonged illness and a delayed return to sport.


Subject(s)
COVID-19 , Adult , Athletes , Cohort Studies , Female , Humans , Male , SARS-CoV-2 , United Kingdom/epidemiology , Young Adult
16.
Acta Crystallogr A Found Adv ; 77(Pt 6): 611-636, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34726636

ABSTRACT

Data reduction and correction steps and processed data reproducibility in the emerging single-crystal total-scattering-based technique of three-dimensional differential atomic pair distribution function (3D-ΔPDF) analysis are explored. All steps from sample measurement to data processing are outlined using a crystal of CuIr2S4 as an example, studied in a setup equipped with a high-energy X-ray beam and a flat-panel area detector. Computational overhead as pertains to data sampling and the associated data-processing steps is also discussed. Various aspects of the final 3D-ΔPDF reproducibility are explicitly tested by varying the data-processing order and included steps, and by carrying out a crystal-to-crystal data comparison. Situations in which the 3D-ΔPDF is robust are identified, and caution against a few particular cases which can lead to inconsistent 3D-ΔPDFs is noted. Although not all the approaches applied herein will be valid across all systems, and a more in-depth analysis of some of the effects of the data-processing steps may still needed, the methods collected herein represent the start of a more systematic discussion about data processing and corrections in this field.

17.
ERJ Open Res ; 7(2)2021 Apr.
Article in English | MEDLINE | ID: mdl-34195253

ABSTRACT

BACKGROUND: Exercise-induced laryngeal obstruction (EILO) is a common cause of exertional breathlessness and wheeze yet is frequently misdiagnosed as asthma. Insight regarding the demographic characteristics, laryngeal abnormalities and impact of EILO is currently limited, with data only available from individual centre reports. The aim of this work was to provide a broader perspective from a collaboration between multiple international expert centres. METHODS: Five geographically distinct clinical paediatric and adult centres (3 Denmark, 1 UK, 1 USA) with an expertise in assessing unexplained exertional breathlessness completed database entry of key characteristic features for all cases referred with suspected EILO over a 5-year period. All included cases completed clinical asthma workup and continuous laryngoscopy during exercise (CLE) testing for EILO. RESULTS: Data were available for 1007 individuals (n=713 female (71%)) with a median (range) age of 24 (8-76) years, and of these 586 (58%) were diagnosed with EILO. In all centres, EILO was frequently misdiagnosed as asthma; on average there was a 2-year delay to diagnosis of EILO, and current asthma medication was discontinued in 20%. Collapse at the supraglottic level was seen in 60%, whereas vocal cord dysfunction (VCD) was only detected/visualised in 18%. Nearly half (45%) of individuals with EILO were active participants in recreational-level sports, suggesting that EILO is not simply confined to competitive/elite athletes. CONCLUSION: Our findings indicate that key clinical characteristics and the impact of EILO/VCD are similar in globally distinct regions, facilitating improved awareness of this condition to enhance recognition and avoid erroneous asthma treatment.

20.
J Pers Med ; 11(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477506

ABSTRACT

Maturity onset diabetes of the young (MODY) is a congenital form of diabetes characterized by onset at a young age and a primary defect in pancreatic-ß-cell function. Currently, 14 subtypes of MODY are known, and each is associated with mutations in a specific gene: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1. The most common subtypes of MODY are associated with mutations in the genes GCK, HNF1A, HNF4A, and HNF1B. Among them, up to 70% of cases are caused by mutations in GCK and HNF1A. Here, an analysis of 14 MODY genes was performed in 178 patients with a MODY phenotype in Western Siberia. Multiplex ligation-dependent probe amplification analysis of DNA samples from 50 randomly selected patients without detectable mutations did not reveal large rearrangements in the MODY genes. In 38 patients (37% males) among the 178 subjects, mutations were identified in HNF4A, GCK, HNF1A, and ABCC8. We identified novel potentially causative mutations p.Lys142*, Leu146Val, Ala173Glnfs*30, Val181Asp, Gly261Ala, IVS7 c.864 -1G>T, Cys371*, and Glu443Lys in GCK and Ser6Arg, IVS 2 c.526 +1 G>T, IVS3 c.713 +2 T>A, and Arg238Lys in HNF1A.

SELECTION OF CITATIONS
SEARCH DETAIL