Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 12(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38068599

ABSTRACT

Climate change has significantly exacerbated the effects of abiotic stresses, particularly high temperatures and drought stresses. This study aims to uncover the mechanisms underlying heat and drought tolerance in lentil accessions. To achieve this objective, twelve accessions were subjected to high-temperature stress (32/20 °C), while seven accessions underwent assessment under drought stress conditions (50% of field capacity) during the reproductive stage. Our findings revealed a significant increase in catalase activity across all accessions under both stress conditions, with ILL7814 and ILL7835 recording the highest accumulations of 10.18 and 9.33 under drought stress, respectively, and 14 µmol H2O2 mg protein-1 min-1 under high temperature. Similarly, ascorbate peroxidase significantly increased in all tolerant accessions due to high temperatures, with ILL6359, ILL7835, and ILL8029 accumulating the highest values with up 50 µmol ascorbate mg protein-1 min-1. In contrast, no significant increase was obtained for all accessions subjected to water stress, although the drought-tolerant accessions accumulated more APX activity (16.59 t to 25.08 µmol ascorbate mg protein-1 min-1) than the sensitive accessions. The accessions ILL6075, ILL7814, and ILL8029 significantly had the highest superoxide dismutase activity under high temperature, while ILL6363, ILL7814, and ILL7835 accumulated the highest values under drought stress, each with 22 to 25 units mg protein-1. Under both stress conditions, ILL7814 and ILL7835 recorded the highest contents in proline (38 to 45 µmol proline/g FW), total flavonoids (0.22 to 0.77 mg QE g-1 FW), total phenolics (7.50 to 8.79 mg GAE g-1 FW), total tannins (5.07 to 20 µg CE g-1 FW), and total antioxidant activity (60 to 70%). Further, ILL7814 and ILL6338 significantly recorded the highest total soluble sugar content under high temperature (71.57 and 74.24 mg g-1, respectively), while ILL7835 achieved the maximum concentration (125 mg g-1) under drought stress. The accessions ILL8029, ILL6104, and ILL7814 had the highest values of reducing sugar under high temperature with 0.62 to 0.79 mg g-1, whereas ILL6075, ILL6363, and ILL6362 accumulated the highest levels of this component under drought stress with 0.54 to 0.66 mg g-1. Overall, our findings contribute to a deeper understanding of the metabolomic responses of lentil to drought and heat stresses, serving as a valuable reference for lentil stress tolerance breeding.

2.
Plants (Basel) ; 12(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37653981

ABSTRACT

Broomrape (Orobanche crenata Forsk.) is a serious problem causing important losses to lentil (Lens culinaris Medik.) production and productivity in Mediterranean countries. Despite intensive breeding activities, no resistance sources against O. crenata have been identified so far. In this study, a Global Lentil Diversity Panel (GLDP) of 1315 genotypes including local populations, landraces, accessions, improved lines and released varieties were evaluated for their resistance to O. crenata under highly infested field conditions at ICARDA Marchouch research station, Morocco. The trial was conducted according to an augmented design with repeated susceptible checks. The best-performing genotypes were selected based on the correlations between Orobanche infestation parameters and agronomic performance. Results showed significant variation (p < 0.005) among the studied genotypes and between the tested genotypes and checks for BY, D2F, D2M, PH, EODW and NEO. Out of the 1315 tested genotypes, only (1%) showed high to moderate resistance levels to O. crenata. Most of these genotypes are improved lines originating from different breeding programs. the PCA analysis clustered all the tested genotypes into four different groups. Good resistance levels were recorded for the genotypes ILL7723, ILL 7982, ILL 6912, ILL 6415, ILL 9850, ILL 605, ILL 7915, ILL 1861 and ILL 9888 showing a parasitism index and grain yield ranging from 1.69 to 5.99 and 10.97 to 60.19 g m-2, respectively. Person's correlation showed significant negative correlations between agronomic traits and infestation parameters. Both the path and spatial analysis showed that the D2F, NEO, D2OE, SEV and parasitism index (PI) were the strongest driver traits that influenced the seed yield (SY).

3.
Front Plant Sci ; 13: 905320, 2022.
Article in English | MEDLINE | ID: mdl-35845662

ABSTRACT

Chickpea is an important source of plant-based protein and mineral elements such as iron (Fe) and zinc (Zn). The development of superior high-yielding germplasm with high nutritional value becomes central for any breeding program. Chickpea biofortified and nutrient-dense seeds can contribute to mitigate many human health problems associated with protein and micronutrients deficiency. In this study, 282 advanced chickpea lines were grown under field conditions to evaluate their agronomic performances and nutritional quality value. The trial was conducted under winter planting conditions during the cropping season 2017/2018 at ICARDA-Marchouch research station, Morocco. Results revealed high genetic variation and significant differences between the tested genotypes for all studied parameters. Under field conditions, the grain yield (GY) varied from 0.57 to 1.81 (t.ha-1), and 100-seed weight (HSW) ranged from 23.1 to 50.9 g. Out of the 282 genotypes, only 4 genotypes (i.e., S130109, S130058, S130066, and S130157) combined both good agronomic performances (GY, HSW) and high nutritional quality (protein, macronutrients, and micronutrients). Protein content ranged from 18.9 to 32.4%. For the whole collection, Fe content varied from 31.2 to 81 ppm, while Zn content ranged from 32.1 to 86.1 ppm. Correlation analysis indicated that the studied traits were significantly intercorrelated, with negative correlation between protein content and Zn concentration. Positive correlations were observed between grain filling time (F2M) and the micronutrients Zn, Cu, and Mn and macroelements K and Mg. Low positive correlation was also recorded between Pr and Fe concentrations. No significant correlation was observed between Fe and Zn. Positive correlations observed between main agronomic and nutritional quality traits makes easy any simultaneous enhancement when combining these traits.

4.
Foods ; 10(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34441620

ABSTRACT

Flour quality is influenced by the nature of the gluten and its various components. Gluten free flour made of pulses is known to enhance the nutritional quality of wheat flour. However, its addition can compromise the rheological and sensorial attributes of the bread. We used mixture design to optimize nutritional and technological qualities of a wheat-chickpea flour blend by adding milk powder as a natural organoleptic improver. A total of thirteen flour blends were prepared by incorporating 10 to 30% chickpea flour and 10 to 20% milk powder to wheat flour. Our results showed that the optimal flour blend consisted of 60% wheat, 24% chickpea, and 16% milk powder. Farinographic parameters of the optimal dough blend remained on par with those of the control dough (100% wheat flour), thereby preserving its bread-making quality. Sensory analysis of breads made from the optimal flour blend revealed no significant difference (p ≤ 0.05) from wheat flour for crumb and chewiness. Appreciation was brought to the appearance, crust, aroma, and taste in the optimized bread. This study suggests that chickpea flour can be suitably incorporated into bread wheat flour up to a percentage of 24% with 16% milk powder to produce bread with optimal nutritional quality while improving its sensory attributes and consumer acceptability.

SELECTION OF CITATIONS
SEARCH DETAIL