Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 117
1.
Sci Rep ; 14(1): 8294, 2024 04 26.
Article En | MEDLINE | ID: mdl-38670985

Rats are multiparous rodents that have been used extensively in research; however, the low reproductive performance of some rat strains hampers the broader use of rats as a biomedical model. In this study, the possibility of increasing the litter size after natural mating in rats through superovulation using an anti-inhibin monoclonal antibody (AIMA) was examined. In outbred Wistar rats, AIMA increased the number of ovulated oocytes by 1.3-fold. AIMA did not affect fertilization and subsequent embryonic development, resulting in a 1.4-fold increase in litter size and a high pregnancy rate (86%). In contrast, conventional superovulation by eCG/hCG administration decreased the pregnancy rate to 6-40% and did not increase the litter size. In inbred Brown Norway rats, AIMA increased the litter size by 1.2-fold, and the pregnancy rate increased more than twice (86% versus 38% in controls). AIMA also increased the litter size by 1.5-fold in inbred Tokai High Avoiders and Fischer 344 rats. AIMA increased the efficiency of offspring production by 1.5-, 2.7-, 1.4-, and 1.4-fold, respectively, in the four rat strains. Thus, AIMA may consistently improve the reproductive performance through natural mating in rats, which could promote the use of AIMA in biomedical research.


Antibodies, Monoclonal , Inhibins , Litter Size , Superovulation , Animals , Female , Litter Size/drug effects , Pregnancy , Rats , Superovulation/drug effects , Antibodies, Monoclonal/pharmacology , Pregnancy Rate , Rats, Wistar , Reproduction/drug effects , Male , Rats, Inbred F344
2.
Immunohorizons ; 8(3): 228-241, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38441482

Although the role of aerobic glycolysis in activated T cells has been well characterized, whether and how fatty acids (FAs) contribute to donor T cell function in allogeneic hematopoietic stem cell transplantation is unclear. Using xenogeneic graft-versus-host disease (GVHD) models, this study demonstrated that exogenous FAs serve as a crucial source of mitochondrial respiration in donor T cells in humans. By comparing human T cells isolated from wild-type NOD/Shi-scid-IL2rγnull (NOG) mice with those from MHC class I/II-deficient NOG mice, we found that donor T cells increased extracellular FA uptake, the extent of which correlates with their proliferation, and continued to increase FA uptake during effector differentiation. Gene expression analysis showed the upregulation of a wide range of lipid metabolism-related genes, including lipid hydrolysis, mitochondrial FA transport, and FA oxidation. Extracellular flux analysis demonstrated that mitochondrial FA transport was required to fully achieve the mitochondrial maximal respiration rate and spare respiratory capacity, whereas the substantial disruption of glucose supply by either glucose deprivation or mitochondrial pyruvate transport blockade did not impair oxidative phosphorylation. Taken together, FA-driven mitochondrial respiration is a hallmark that differentiates TCR-dependent T cell activation from TCR-independent immune response after hematopoietic stem cell transplant.


Graft vs Host Disease , Oxidative Phosphorylation , Humans , Animals , Mice , Mice, Inbred NOD , T-Lymphocytes , Fatty Acids , Glucose , Mice, SCID , Receptors, Antigen, T-Cell
3.
PLoS One ; 19(3): e0299450, 2024.
Article En | MEDLINE | ID: mdl-38512921

OBJECTIVES: Compared to conventional disease-modifying antirheumatic drugs (DMARDs), biological DMARDs demonstrate superior efficacy but come with higher costs and increased infection risks. The ability to stop and resume biological DMARD treatment while maintaining remission would significantly alleviate these barriers and anxieties. The objective of this study was to identify biomarkers that can predict an imminent relapse, hopefully enabling the timely resumption of biological DMARDs before relapse occurs. METHODS: Forty patients with rheumatoid arthritis who had been in remission for more than 12 months were included in the study. The patients discontinued their biological DMARD treatment and were monitored monthly for the next 24 months. Out of the 40 patients, 14 (35%) remained in remission at the end of the 24-month period, while 26 (65%) experienced relapses at different time points. Among the relapse cases, 13 patients experienced early relapse within 6 months, and another 13 patients had late relapse between 6 months and 24 months. Seventy-three cytokines in the sera collected longitudinally from the 13 patients with late relapse were measured by multiplex immunoassay. Using cytokines at two time points, immediately after withdrawal and just before relapse, volcano plot and area under the receiver operating characteristic curves (AUC) were drawn to select cytokines that distinguished imminent relapse. Univariate and multivariate logistic regression analyses were used for the imminent relapse prediction model. RESULTS: IL-6, IL-29, MMP-3, and thymic stromal lymphopoietin (TSLP) were selected as potential biomarkers for imminent relapse prediction. All four cytokines were upregulated at imminent relapse time point. Univariate and multivariate logistic regression showed that a combination model with IL-6, MMP-3, and TSLP yielded an AUC of 0.828 as top predictors of imminent relapse. CONCLUSIONS: This methodology allows for the prediction of imminent relapse while patients are in remission, potentially enabling the implementation of on- and off-treatments while maintaining remission. It also helps alleviate patient anxiety regarding the high cost and infection risks associated with biological DMARDs, which are the main obstacles to benefiting from their superb efficacy.


Antirheumatic Agents , Arthritis, Rheumatoid , Biological Products , Humans , Matrix Metalloproteinase 3 , Interleukin-6/therapeutic use , Arthritis, Rheumatoid/drug therapy , Antirheumatic Agents/therapeutic use , Biomarkers , Chronic Disease , Recurrence , Biological Products/therapeutic use , Remission Induction , Treatment Outcome
4.
Plant Cell Physiol ; 64(10): 1167-1177, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37498972

Plant seedlings adjust the growth of the hypocotyl in response to surrounding environmental changes. Genetic studies have revealed key players and pathways in hypocotyl growth, such as phytohormones and light signaling. However, because of genetic redundancy in the genome, it is expected that not-yet-revealed mechanisms can be elucidated through approaches different from genetic ones. Here, we identified a small compound, HYGIC (HG), that simultaneously induces hypocotyl elongation and thickening, accompanied by increased nuclear size and enlargement of cortex cells. HG-induced hypocotyl growth required the ethylene signaling pathway activated by endogenous ethylene, involving CONSTITUTIVE PHOTOMORPHOGENIC 1, ETHYLENE INSENSITIVE 2 (EIN2) and redundant transcription factors for ethylene responses, ETHYLENE INSENSITIVE 3 (EIN3) and EIN3 LIKE 1. By using EBS:GUS, a transcriptional reporter of ethylene responses based on an EIN3-binding-cis-element, we found that HG treatment ectopically activates ethylene responses at the epidermis and cortex of the hypocotyl. RNA-seq and subsequent gene ontology analysis revealed that a significant number of HG-induced genes are related to responses to hypoxia. Indeed, submergence, a representative environment where the hypoxia response is induced in nature, promoted ethylene-signaling-dependent hypocotyl elongation and thickening accompanied by ethylene responses at the epidermis and cortex, which resembled the HG treatment. Collectively, the identification and analysis of HG revealed that ectopic responsiveness to ethylene promotes hypocotyl growth, and this mechanism is activated under submergence.


Arabidopsis Proteins , Arabidopsis , Hypocotyl/metabolism , DNA-Binding Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Signal Transduction/physiology , Ethylenes/pharmacology , Ethylenes/metabolism , Hypoxia , Gene Expression Regulation, Plant
5.
Front Plant Sci ; 14: 1099587, 2023.
Article En | MEDLINE | ID: mdl-36968385

Plants retain the ability to generate a pluripotent tissue called callus by dedifferentiating somatic cells. A pluripotent callus can also be artificially induced by culturing explants with hormone mixtures of auxin and cytokinin, and an entire body can then be regenerated from the callus. Here we identified a pluripotency-inducing small compound, PLU, that induces the formation of callus with tissue regeneration potency without the external application of either auxin or cytokinin. The PLU-induced callus expressed several marker genes related to pluripotency acquisition via lateral root initiation processes. PLU-induced callus formation required activation of the auxin signaling pathway though the amount of active auxin was reduced by PLU treatment. RNA-seq analysis and subsequent experiments revealed that Heat Shock Protein 90 (HSP90) mediates a significant part of the PLU-initiated early events. We also showed that HSP90-dependent induction of TRANSPORT INHIBITOR RESPONSE 1, an auxin receptor gene, is required for the callus formation by PLU. Collectively, this study provides a new tool for manipulating and investigating the induction of plant pluripotency from a different angle from the conventional method with the external application of hormone mixtures.

6.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36768434

Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.


Histone Acetyltransferases , Neural Stem Cells , Mice , Animals , Histone Acetyltransferases/genetics , Epigenesis, Genetic , Neurogenesis , Embryonic Stem Cells , Cell Differentiation/physiology
7.
RSC Chem Biol ; 3(12): 1422-1431, 2022 Nov 30.
Article En | MEDLINE | ID: mdl-36544577

Chemical protein synthesis can provide well-defined modified proteins. Herein, we report the chemical synthesis of plant-derived cysteine-rich secretory proteins and late-stage derivatization of the synthetic proteins. The syntheses were achieved with distinct chemoselective amide bond forming reactions - EPF2 by native chemical ligation (NCL), epidermal patterning factor (EPF) 1 by the α-ketoacid-hydroxylamine (KAHA) ligation, and fluorescent functionalization of their folded variants by potassium acyltrifluoroborate (KAT) ligation. The chemically synthesized EPFs exhibit bioactivity on stomatal development in Arabidopsis thaliana. Comprehensive synthesis of EPF derivatives allowed us to identify suitable fluorescent variants for bioimaging of the subcellar localization of EPFs.

8.
Sci Rep ; 12(1): 16547, 2022 10 03.
Article En | MEDLINE | ID: mdl-36192530

Since the advent of biological disease modifying anti-rheumatic drugs (bDMARDs) in the treatment of rheumatoid arthritis (RA), most RA patients receiving such drugs have achieved remission at the expense of cost and infection risk. After bDMARDs are withdrawn, a substantial proportion of patients would have relapses even if they were in complete remission. In our previous report, relapse prediction could be made at the time of bDMARD withdrawal by measuring the serum levels of five cytokines. We report herein that, among 73 cytokines examined, serum levels of only interferon ß (IFNß) at the time of bDMARD withdrawal could predict early relapse (within 5 months) in patients who were categorized to relapse by the five cytokines in our previous report, with a cut-off value of 3.38 in log2 and AUC of 0.833. High serum levels of IFNß in the early-relapse group remained high until actual relapse occurred. Therefore, patients who relapse early might be biochemically different from those who relapse late or do not relapse at all. We recommend that patients who are predicted to relapse early continue bDMARDs even if they are in complete remission. This finding contributes to shared decision-making regarding how and when bDMARDs should be discontinued.


Antirheumatic Agents , Arthritis, Rheumatoid , Biological Products , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biological Factors/therapeutic use , Biological Products/therapeutic use , Chronic Disease , Cytokines/therapeutic use , Humans , Interferon-beta/therapeutic use , Recurrence , Treatment Outcome
9.
Front Plant Sci ; 13: 819360, 2022.
Article En | MEDLINE | ID: mdl-35371169

The secondary cell wall (SCW) in the xylem is one of the largest sink organs of carbon in woody plants, and is considered a promising sustainable bioresource for biofuels and biomaterials. To enhance SCW formation in poplar (Populus sp.) xylem, we developed a self-reinforced system of SCW-related transcription factors from Arabidopsis thaliana, involving VASCULAR-RELATED NAC-DOMAIN7 (VND7), SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1/NAC SECONDARY WALL THICKENING-PROMOTING FACTOR3 (SND1/NST3), and MYB46. In this system, these transcription factors were fused with the transactivation domain VP16 and expressed under the control of the Populus trichocarpa CesA18 (PtCesA18) gene promoter, creating the chimeric genes PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16. The PtCesA18 promoter is active in tissues generating SCWs, and can be regulated by AtVND7, AtSND1, and AtMYB46; thus, the expression levels of PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16 are expected to be boosted in SCW-generating tissues. In the transgenic hybrid aspens (Populus tremula × tremuloides T89) expressing PtCesA18pro::AtSND1:VP16 or PtCesA18pro::AtMYB46:VP16 grown in sterile half-strength Murashige and Skoog growth medium, SCW thickening was significantly enhanced in the secondary xylem cells, while the PtCesA18pro::AtVND7:VP16 plants showed stunted xylem formation, possibly because of the enhanced programmed cell death (PCD) in the xylem regions. After acclimation, the transgenic plants were transferred from the sterile growth medium to pots of soil in the greenhouse, where only the PtCesA18pro::AtMYB46:VP16 aspens survived. A nuclear magnetic resonance footprinting cell wall analysis and enzymatic saccharification analysis demonstrated that PtCesA18pro::AtMYB46:VP16 influences cell wall properties such as the ratio of syringyl (S) and guaiacyl (G) units of lignin, the abundance of the lignin ß-aryl ether and resinol bonds, and hemicellulose acetylation levels. Together, these data indicate that we have created a self-reinforced system using SCW-related transcription factors to enhance SCW accumulation.

11.
Anticancer Res ; 41(12): 6051-6059, 2021 Dec.
Article En | MEDLINE | ID: mdl-34848459

BACKGROUND/AIM: In pancreatic cancer tissues, hypoxic areas exist due to poor blood flow. Attenuation of the pharmacological efficacy of existing anticancer drugs in these hypoxic areas necessitates the search for novel anticancer compounds. We aimed to determine whether erastin exhibits anticancer effects in a hypoxic environment. MATERIALS AND METHODS: Pancreatic cancer cell lines were subjected to cobalt chloride, a hypoxia-mimicking agent. Cell viability assay, measurement of reactive oxygen species, and western blotting analysis were conducted to investigate the efficacy of erastin under hypoxic environments. RESULTS: Erastin exhibited remarkable cytotoxicity and induced apoptosis under hypoxic conditions. Furthermore, erastin triggered the intracellular accumulation of reactive oxygen species in a hypoxic environment. Subsequent treatment with N-acetylcysteine, an antioxidant, markedly attenuated cytotoxicity, and apoptosis. CONCLUSION: Erastin induces cell death by accumulation of intracellular reactive oxygen species and inducing apoptosis under hypoxic conditions, proving its potential for further development as a novel anticancer compound.


Antineoplastic Agents/pharmacology , Cell Hypoxia/drug effects , Piperazines/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Hypoxia/genetics , Hypoxia/metabolism , Oxidation-Reduction/drug effects , Pancreatic Neoplasms , Reactive Oxygen Species/metabolism
12.
Sci Rep ; 11(1): 23104, 2021 11 29.
Article En | MEDLINE | ID: mdl-34845278

To fully understand the mechanisms governing learning and memory, animal models with minor interindividual variability and higher cognitive function are required. THA rats established by crossing those with high learning capacity exhibit excellent learning and memory abilities, but the factors underlying their phenotype are completely unknown. In the current study, we compare the hippocampi of parental strain Wistar rats to those of THA rats via metabolomic analysis in order to identify molecules specific to the THA rat hippocampus. Higher branched-chain amino acid (BCAA) levels and enhanced activation of BCAA metabolism-associated enzymes were observed in THA rats, suggesting that acetyl-CoA and acetylcholine are synthesized through BCAA catabolism. THA rats maintained high blood BCAA levels via uptake of BCAAs in the small intestine and suppression of BCAA catabolism in the liver. Feeding THA rats with a BCAA-reduced diet decreased acetylcholine levels and learning ability, thus, maintaining high BCAA levels while their proper metabolism in the hippocampus is the mechanisms underlying the high learning ability in THA rats. Identifying appropriate BCAA nutritional supplements and activation methods may thus hold potential for the prevention and amelioration of higher brain dysfunction, including learning disabilities and dementia.


Amino Acids, Branched-Chain/chemistry , Animal Feed , Hippocampus/metabolism , Learning , Animals , Behavior , Behavior, Animal , Diet , Hippocampus/pathology , Liver/metabolism , Male , Memory , Metabolome , Models, Animal , Phenotype , Psychophysics , Rats , Rats, Wistar
13.
Sci Rep ; 11(1): 20771, 2021 10 21.
Article En | MEDLINE | ID: mdl-34675298

Biological disease modifying anti-rheumatic drugs (bDMARDs) show dramatic treatment efficacy in rheumatoid arthritis (RA). Long-term use of bDMARDs, however, has disadvantages such as high costs and infection risk. Therefore, a methodology is needed to predict any future RA relapse. Herein, we report a novel multi-biomarker combination which predicts relapse after bDMARDs-withdrawal in patients in remission. Forty patients with RA in remission for more than 12 months were enrolled. bDMARDs were withdrawn and they were followed monthly for the next 24 months. Fourteen patients (35%) of 40 in the cohort remained in remission at 24 months, whereas 26 (65%) relapsed at various time-points. Serum samples obtained longitudinally from patients in remission were assessed for the relapse-prediction biomarkers and index from 73 cytokines by the exploratory multivariate ROC analysis. The relapse-prediction index calculated from the 5 cytokines, IL-34, CCL1, IL-1ß, IL-2 and IL-19, strongly discriminated between patients who relapsed and those who stayed in remission. These findings could contribute to clinical decision-making as to the timing of when to discontinue bDMARDs in RA treatment.


Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biomarkers, Pharmacological/blood , Adult , Aged , Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Cytokines/blood , Female , Humans , Male , Middle Aged , Prognosis , Recurrence , Withholding Treatment
14.
Regen Ther ; 18: 223-230, 2021 Dec.
Article En | MEDLINE | ID: mdl-34377752

INTRODUCTION: Artificial dermis is an effective therapeutic method for full-thickness dermal defects. However, the currently available artificial dermis made of porcine or bovine type I collagen has several limitations such as incomplete epithelialization and delayed migration of fibrogenic and angiogenic cells into the graft. We previously developed a composite dermal graft containing a mixture of moon jellyfish collagen and porcine type I collagen, and reported its stimulatory effect on both the re-epithelialization of the epidermis and the migration of fibrogenic and angiogenic cells into the graft. In the present study, we examined whether the same effect was observed by administering jellyfish collagen solution externally onto an artificial dermal graft made of bovine type I collagen. METHODS: We used a 6 mm full-thickness wound defect model. Moon jellyfish collagen was prepared as a concentrated 0.5% solution and dripped externally onto a transplanted artificial dermal graft made of bovine type I collagen. Wound repair and long-term dermal tissue remodeling were compared between mice administered jellyfish collagen solution on the bovine collagen graft and those transplanted with a composite dermal graft containing the same amounts of jellyfish and bovine collagens. The stimulatory effect of jellyfish collagen solution was also evaluated using diabetic dB/dB mice. RESULTS: External administration of jellyfish collagen solution onto the bovine collagen graft significantly accelerated wound closure compared to control saline. It also decreased the number of inflammatory cells infiltrating the wound and suppressed absorption of the transplanted graft, as well as reduced subsequent scar formation. Furthermore, external administration of jellyfish collagen solution onto the bovine collagen graft improved the delayed wound healing in diabetic model mice, and this effect was superior to that of the currently used basic fibroblast growth factor. CONCLUSIONS: External administration of moon jellyfish collagen solution onto a bovine collagen graft significantly accelerated physiological wound healing and prevented excessive scar formation. It also improved wound closure in diabetic model mice, confirming its therapeutic application for intractable skin ulcers caused by impaired wound healing.

15.
PLoS One ; 16(7): e0255355, 2021.
Article En | MEDLINE | ID: mdl-34320035

Mitochondrial dysfunction is significantly associated with neurological deficits and age-related neurological diseases. While mitochondria are dynamically regulated and properly maintained during neurogenesis, the manner in which mitochondrial activities are controlled and contribute to these processes is not fully understood. Mitochondrial transcription factor A (TFAM) contributes to mitochondrial function by maintaining mitochondrial DNA (mtDNA). To clarify how mitochondrial dysfunction affects neurogenesis, we induced mitochondrial dysfunction specifically in murine neural stem cells (NSCs) by inactivating Tfam. Tfam inactivation in NSCs resulted in mitochondrial dysfunction by reducing respiratory chain activities and causing a severe deficit in neural differentiation and maturation both in vivo and in vitro. Brain tissue from Tfam-deficient mice exhibited neuronal cell death primarily at layer V and microglia were activated prior to cell death. Cultured Tfam-deficient NSCs showed a reduction in reactive oxygen species produced by the mitochondria. Tfam inactivation during neurogenesis resulted in the accumulation of ATF4 and activation of target gene expression. Therefore, we propose that the integrated stress response (ISR) induced by mitochondrial dysfunction in neurogenesis is activated to protect the progression of neurodegenerative diseases.


Brain/pathology , DNA-Binding Proteins/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Transcription Factors/genetics , Animals , Brain/growth & development , Brain/metabolism , Cell Differentiation , Cells, Cultured , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/deficiency , Down-Regulation , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Microglia/metabolism , Mitochondrial Proteins/deficiency , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Reactive Oxygen Species/metabolism , Transcription Factors/deficiency
16.
Mol Ther Methods Clin Dev ; 20: 451-462, 2021 Mar 12.
Article En | MEDLINE | ID: mdl-33614821

We conducted two lines of genome-editing experiments of mouse hematopoietic stem cells (HSCs) with the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9). First, to evaluate the genome-editing efficiency in mouse bona fide HSCs, we knocked out integrin alpha 2b (Itga2b) with Cas9 ribonucleoprotein (Cas9/RNP) and performed serial transplantation in mice. The knockout efficiency was estimated at approximately 15%. Second, giving an example of X-linked severe combined immunodeficiency (X-SCID) as a target genetic disease, we showed a proof-of-concept of universal gene correction, allowing rescue of most of X-SCID mutations, in a completely non-viral setting. We inserted partial cDNA of interleukin-2 receptor gamma chain (Il2rg) into intron 1 of Il2rg via non-homologous end-joining (NHEJ) with Cas9/RNP and a homology-independent targeted integration (HITI)-based construct. Repaired HSCs reconstituted T lymphocytes and thymuses in SCID mice. Our results show that a non-viral genome-editing of HSCs with CRISPR/Cas9 will help cure genetic diseases.

17.
Transplant Cell Ther ; 27(3): 231.e1-231.e8, 2021 03.
Article En | MEDLINE | ID: mdl-35348117

Mesenchymal stromal cells (MSCs) have been shown to inhibit aerobic glycolysis in activated T cells, leading to increased autophagy. Although tryptophan depletion induced by indoleamine 2,3-dioxygenase (IDO) generated by MSCs has been suggested as a potential mechanism, we found that this inhibition was completely abolished when T cells were physically separated from MSCs using the Transwell system. Instead, in the current study, we demonstrate that programmed cell death 1 receptor (PD-1) and its ligand PD-L1, the expression of which is induced on activated T cells and MSCs, respectively, in response to IFN-γ are involved in this inhibition. Blockade of PD-1/PD-L1 interaction by blocking antibodies significantly restored glucose uptake, glycolytic activity, and cluster formation of activated T cells, whereas a specific inhibitor of IDO, 1-methyl-DL-tryptophan, had no effect. Neither surface nor cytoplasmic glucose transporter-1 expression on T cells was changed by MSCs. In addition, glycolytic gene expression in activated T cells was not inhibited despite the presence of MSCs. However, we found that hexokinase II (HK2) protein expression was markedly decreased in activated T cells that had been cocultured with MSCs. PD-1 blocking antibody restored HK2 expression. Taken together, our findings indicate that the PD-1/PD-L1 axis is involved in the MSC-mediated suppression of T cell glycolysis by negatively regulating HK2 activity at the protein level, but not at the mRNA level.


B7-H1 Antigen , Mesenchymal Stem Cells , B7-H1 Antigen/genetics , Glycolysis , Hexokinase/genetics , Lymphocyte Activation , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes , Tryptophan/metabolism
18.
Anticancer Res ; 40(9): 5071-5079, 2020 Sep.
Article En | MEDLINE | ID: mdl-32878795

BACKGROUND/AIM: Liver cancer has extremely poor prognosis. The cancerous tissues contain hypoxic regions, and the available drugs are poorly effective in hypoxic environments. NADPH oxidase 4 (NOX4), producing reactive oxygen species (ROS), may contribute to cancer malignancy under hypoxic conditions. However, its role in liver cancer has not been examined in detail. Our aim was to explore the effects of setanaxib, a recently developed selective NOX4 inhibitor, in liver cancer cells under hypoxic conditions. MATERIALS AND METHODS: Liver cancer cell lines (HepG2, HLE and Alexander) were treated with hypoxia-mimetic agent cobalt chloride. Cytotoxicity assays, immunoblot analysis and ROS detection assay were performed to detect the effect of setanaxib under hypoxic conditions. RESULTS: Setanaxib exhibited hypoxia-selective cytotoxicity and triggered apoptosis in cancer cells. Moreover, setanaxib caused mitochondrial ROS accumulation under hypoxic conditions. Treatment with antioxidants markedly attenuated setanaxib-induced cytotoxicity and apoptosis under hypoxic conditions. CONCLUSION: Setanaxib caused mitochondrial ROS accumulation in a hypoxia-selective manner and evoked cancer cell cytotoxicity by inducing apoptosis. Thus, setanaxib has a great potential as a novel anticancer compound under hypoxic conditions.


Antineoplastic Agents/pharmacology , Cell Hypoxia/drug effects , Hypoxia/metabolism , Liver Neoplasms/metabolism , NADPH Oxidase 4/antagonists & inhibitors , Cell Line, Tumor , Humans , Mitochondria/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
19.
Redox Biol ; 36: 101643, 2020 09.
Article En | MEDLINE | ID: mdl-32863227

Epithelial cells require attachment to a support, such as the extracellular matrix, for survival. During cancer progression and metastasis, cancerous epithelial cells must overcome their dependence on adhesion signals. Dependence on glucose metabolism is a hallmark of cancer cells, but the nutrient requirements of cancer cells under anchorage-deficient conditions remain uncharacterized. Here, we report that cancer cells prioritize glutamine-derived tricarboxylic acid cycle energy metabolism over glycolysis to sustain anchorage-independent survival. Moreover, glutamine-dependent metabolic reprogramming is required not only to maintain ATP levels but also to suppress excessive oxidative stress through interaction with cystine. Mechanistically, AMPK, a central regulator of cellular responses to metabolic stress, participates in the induction of the expression of ASCT2, a glutamine transporter, and enhances glutamine consumption. Most interestingly, AMPK activation induces Nrf2 and its target proteins, allowing cancer cells to maintain energy homeostasis and redox status through glutaminolysis. Treatment with an integrin inhibitor was used to mimic the alterations in cell morphology and metabolic reprogramming caused by detachment. Under these conditions, cells were vulnerable to glutamine starvation or glutamine metabolism inhibitors. The observed preference for glutamine over glucose was more pronounced in aggressive cancer cell lines, and treatment with the glutaminase inhibitor, CB839, and cystine transporter inhibitor, sulfasalazine, caused strong cytotoxicity. Our data clearly show that anchorage-independent survival of cancer cells is supported mainly by glutaminolysis via the AMPK-Nrf2 signal axis. The discovery of new vulnerabilities along this route could help slow or prevent cancer progression.


Neoplasms , Cell Survival , Extracellular Matrix/metabolism , Glutamine/metabolism , Glycolysis , Humans , Neoplasms/genetics
20.
Sci Rep ; 10(1): 11435, 2020 07 10.
Article En | MEDLINE | ID: mdl-32651421

In Japan, there is no publicly funded screening for hepatitis B virus (HBV) and hepatitis C virus (HCV) infections (using HBs antigen and HCV antibody, respectively) among workers, and workplace health programmes play a crucial role in reducing viral hepatitis-related deaths. The national number of hepatitis screening tests conducted in the workplace is unknown. To provide baseline data for policy formulation, we conducted a nationwide survey to estimate these parameters using data from approximately 10.5 million workers (6.8 million men and 3.8 million women) who underwent mandatory health examinations in their workplaces between April 2016 and March 2017. Among these workers, 494,303 (5.23%, 95% confidence interval [CI] 5.22%-5.24%) and 313, 193 (3.82%, 95% CI 3.81%-3.84%) were screened for HBV and HCV, respectively. Among those who were screened, 0.28% (95% CI 0.27-0.30%) and 0.35% (95% CI 0.33-0.37%) tested positive for HBs antigen and HCV antibody, respectively. According to the age-specific prevalence from the survey an estimated 0.30 and 0.14 million workers in Japan require treatment for HBV and HCV, respectively. To reduce viral hepatitis-related deaths by efficiently identifying workers who need treatment and promoting access to treatment, one-time hepatitis screening of all workers should be considered.


Hepatitis B/blood , Hepatitis C Antibodies/blood , Hepatitis C/blood , Mass Screening/methods , Adult , Aged , Female , Hepacivirus/isolation & purification , Hepacivirus/pathogenicity , Hepatitis B/epidemiology , Hepatitis B/virology , Hepatitis B virus/isolation & purification , Hepatitis B virus/pathogenicity , Hepatitis C/epidemiology , Hepatitis C/virology , Humans , Male , Middle Aged
...