Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1386727, 2024.
Article in English | MEDLINE | ID: mdl-38720888

ABSTRACT

Introduction: Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods: Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results: Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αß T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion: Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.


Subject(s)
Chickens , Disease Models, Animal , Feathers , Melanocytes , Vitiligo , Animals , Vitiligo/immunology , Chickens/immunology , Feathers/immunology , Melanocytes/immunology , Melanocytes/metabolism , T-Lymphocytes/immunology
2.
Animals (Basel) ; 14(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791730

ABSTRACT

Management choices during the pullet phase can affect behavior, welfare, and health later in life, but few studies have evaluated the pullet phase, particularly in extensive housing systems. This study was a 2 × 2 factorial randomized complete block design (RCBD) with two strains and two stocking densities. The Lohmann LB-Lite and Lohmann LSL-Lite were housed on the floor at high-stocking density (619-670 cm2/bird) and low-stocking density (1249-1352 cm2/bird), which changed with age from 2 to 16 weeks of age (WOA). Bird-based measures of appearance, blood parameters, organ measurements, and production values were evaluated. Stocking density alone affected (p < 0.05) only relative bursal weight (% of body weight)-3.32% in the low-density versus 3.08% in the high-density group. High-stocking density was correlated with decreased uniformity (high-89.33 ± 0.24%; low-90.41 ± 0.24; p < 0.02) and worse feather coverage in the brown strain. High-stocking density was correlated with greater uniformity (High-90.39 ± 0.24%; Low-88.47 ± 0.24%; p < 0.001) and better feather coverage in the white strain. This study's feed conversion ratio (FCR) was improved by 0.07 in the low-stocking density for both strains. The remaining parameters were affected by strain and age only. Thus, while stocking density effects vary slightly depending on the strain used, cage-free pullets had limited negative effects at both the high and low-stocking densities tested in this study; there were few to no changes in the numerous bird-based welfare parameters tested.

3.
Vet Sci ; 11(1)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38250922

ABSTRACT

To assess effects of environmental heat stress (HS) on the local and systemic inflammatory responses to lipopolysaccharide (LPS), broilers were reared under thermoneutral (TN) or cyclic HS conditions. Thermoneutral temperatures followed commercial production settings, with HS broilers exposed to 35 °C for 14 h/day from 4 days onward. At 37 days, HS- and TN-broilers were assigned to either LPS (100 µg/mL) or endotoxin-free phosphate-buffered saline (PBS; vehicle) treatments, eight each to HS- and TN-LPS, four each to HS- and TN-PBS. Treatments were administered by intradermal injection of growing feather (GF) pulps; 10 µL/GF; 12 GF/broiler. Blood and GF were collected before and at 6 and 24 h post-injection to assess leukocyte population changes in GF-pulps and blood, reactive oxygen species (ROS) generation and cytokine expression in GF-pulps, and plasma concentrations of alpha-1 acid glycoprotein (AGP-1). HS-LPS broilers had lower (p ≤ 0.05) infiltration of heterophils and macrophages, ROS generation, and inflammatory cytokine expression in GF-pulps, and lacked the increases in heterophil, monocyte, and plasma AGP-1 concentrations observed in TN-LPS broilers. HS-broilers had similar or greater drops in blood lymphocytes 6 h post-LPS or -PBS injection, respectively, and lower baseline levels (p ≤ 0.05) of circulating T- and B-lymphocytes than TN-broilers. Results indicated that cyclic HS reduced the local and systemic acute inflammatory responses to LPS in broilers, likely impairing their innate defense against microbial infection.

4.
Animals (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36290253

ABSTRACT

Reducing Salmonella in commercial chickens is vital to decreasing human salmonellosis infections resulting from contact with contaminated poultry and poultry products. As the intestinal microbiota plays an important role in preventing pathogen colonization, we sought to understand the relationship between Salmonella infection and the cecal microbiota and the host immune system. Day-of-hatch broiler chicks were assigned to three treatments: control, artificial (SA), and natural (SN) Salmonella infection. At seven days of age, control and SA birds were inoculated with PBS or Salmonella Typhimurium, respectively. Five SA birds were transferred to SN cages to facilitate natural infection. Cecal content and blood samples were collected at 0, 8, 14, and 21 days of age for microbiota and leukocyte analysis, respectively. A significant change in microbiota composition was observed in both groups as noted by a decrease in Lactobacillus and Escherichia and an increase in Bacteroides. Leukocyte analysis revealed a decrease in the percentage of circulating monocytes at 7 days post-infection while a decrease in thrombocyte and an increase in heterophil percentages were seen at 14 days post-infection. Taken together, these results demonstrate the ability of Salmonella to modulate the intestinal microbiota to facilitate colonization. Additionally, results indicated an early role of monocytes and thrombocytes during colonization, followed by heterophils.

5.
Animals (Basel) ; 12(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35625119

ABSTRACT

The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with two pens each, providing eight replicates per treatment in each trial (n = 20 chicks/replicate). Environmental conditions in the TN group were established to simulate commercial production settings. Heat stress chickens were exposed to cyclic HS at 35 °C for 12 h/day from days 7−42. Performance parameters, intestinal permeability, bone parameters, meat quality, and leukocyte proportions were estimated. There was a significant (p < 0.05) reduction in body weight (BW), BW gain, and feed intake, but the feed conversion ratio increased in chickens under cyclic HS. Moreover, HS chickens had a significantly higher gut permeability, monocyte and basophil levels, but less bone mineralization than TN chickens. Nevertheless, the TN group had significant increases in breast yield, woody breast, and white striping in breast fillets compared to HS. These results present an alternative model to our previously published continuous HS model to better reflect commercial conditions to evaluate commercially available nutraceuticals or products with claims of reducing the severity of heat stress.

6.
Front Med (Lausanne) ; 9: 846100, 2022.
Article in English | MEDLINE | ID: mdl-35547230

ABSTRACT

Vitiligo is a common dermatological disorder affecting 1-2% of the world's population. It is characterized by postnatal, autoimmune destructions of melanocytes in the skin, resulting in patches of depigmentation. Autoimmunity in vitiligo may also affect melanocytes in non-integumental tissues, including the eyes where choroidal melanocytes are the target of the autoimmune response. The Smyth line (SL) of chicken is the only animal model that spontaneously and predictably develops all clinical and biological manifestations of autoimmune vitiligo. In SL vitiligo (SLV), destruction of epidermal melanocytes in growing feathers (GFs) involves a melanocyte-specific, Th1-mediated cellular immune response. Smyth chickens may also exhibit uveitis and vision impairment. Previous studies established a strong association between SLV and vision impairment, including similar pathology in affected eyes and GFs. To determine the presence, types, and activities of choroid infiltrating mononuclear cells, we collected eyes before, near onset, and during active SLV from sighted, partially blind, and blind SL chickens. All SL chickens with vision impairment had SLV. Immunohistochemistry and quantitative reverse transcriptase-PCR analyses revealed mononuclear cell and cytokine expression profiles in the autoimmune destruction of melanocytes in choroids that are identical to those described in GF, demonstrating the systemic nature of autoimmunity against melanocytes in SLV. In addition, we observed aberrant melanogenesis in SL eyes. The immunopathogenesis in SL vision impairment resembles human vitiligo-associated ocular diseases, especially Vogt-Koyanagi-Harada syndrome and sympathetic ophthalmia. Hence, the Smyth chicken autoimmune vitiligo model provides the opportunity to expand our understanding of spontaneous autoimmune pigmentation disorders and to develop effective treatment strategies.

7.
Front Vet Sci ; 8: 640968, 2021.
Article in English | MEDLINE | ID: mdl-34041289

ABSTRACT

Proteins are considered the most expensive nutrients in commercial modern broiler production, and their dietary inclusion at low levels is pivotal to minimize feed costs and reduce nitrogen waste. The quest for an environmentally friendly source of proteins that favor the formulation of low protein diets without compromising broiler health, welfare, and growth performance has become a hotspot in nutrition research. Due to its high protein content, the naturally growing Spirulina microalgae is considered a promising nutrient source. The purpose of the present study was, therefore, to determine the effects of Spirulina supplementation on liver bacterial translocation, hematological profile, and circulating inflammatory and redox markers in broilers fed a low-protein diet. One-day-old Ross 708 male broilers (n = 180) were randomly assigned into one of three experimental treatments: standard diet as a control, low protein diet, and low protein diet supplemented with 100 g/kg of Spirulina. Target molecular markers were measured in the peripheral blood circulation using real-time quantitative PCR. Reducing dietary proteins increased bacterial translocation and systemic inflammation as indicated by proportions of basophils among blood leukocytes. The expression levels of circulating pro-inflammatory cytokines [interleukin (IL)-3, IL-6, IL-4, IL-18, and tumor necrosis factor-α], chemokines (CCL-20), and NOD-like receptor family pyrin domain containing 3 inflammasome were significantly upregulated in birds fed the low protein diet compared with the control. The inclusion of Spirulina reversed these effects, which indicates that Spirulina reduces systemic inflammation- and bacterial translocation-induced by a low protein diet and could be a promising alternative protein source in poultry diets.

8.
Poult Sci ; 99(12): 6593-6605, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248575

ABSTRACT

The inflammatory response involves a complex interplay of local tissue activities designed to recruit leukocytes and proteins from the blood to the infected tissue. For egg-type chickens, we established the growing feather (GF) as an accessible tissue test site to monitor tissue responses to injected test-material. For commercial broilers, whose health depends to a large extent on innate immune system functions, the GF test system offers an important novel window to directly assess their natural defenses. This study was conducted to adapt the GF test system for use in broilers, and use it to simultaneously examine local (GF) and systemic (blood) inflammatory responses initiated by GF pulp injection of lipopolysaccharide (LPS). Specifically, GF of 12 male and 12 female, 5-week-old broilers were injected with LPS (16 GF/chicken; 1 µg LPS/GF). Blood and GF were collected at 0 (before), 6, and 24 h after GF injection. GF pulp was used to determine leukocyte-infiltration and gene-expression profiles, reactive-oxygen-species generation, and superoxide dismutase (SOD) activity. Blood was used to determine blood cell profiles and SOD activity. A time effect (P ≤ 0.05) was observed for most aspects examined. In GF, LPS injection resulted in heterophil and monocyte infiltration reaching maximal levels at 6 and 24 h, respectively. Reactive-oxygen-species generation, SOD activity, and mRNA levels of IL-1ß, IL-8, IL-6, IL-10, and cathelicidin B1 were elevated, whereas those of TNF-α, LITAF, SOD1, and SOD2 decreased after LPS injection. In blood, levels of heterophils and monocytes were elevated at 6 h, lymphocytes and RBC decreased at 6 h, and thrombocytes and SOD activity increased at 24 h. Assessment of LPS-induced activities at the site of inflammation (GF) provided novel and more relevant insights into temporal, qualitative, and quantitative aspects of inflammatory responses than blood. Knowledge generated from this dual-window approach may find direct application in identification of individuals with robust, balanced innate defenses and provide a platform for studying the effects of exogenous treatments (e.g., nutrients, probiotics, immunomodulators, etc.) on inflammatory responses taking place in a complex tissue.


Subject(s)
Chickens , Feathers , Gene Expression Regulation , Inflammation , Lipopolysaccharides , Monocytes , Animals , Chickens/immunology , Cytokines/genetics , Feathers/drug effects , Feathers/immunology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Inflammation/chemically induced , Leukocyte Count/veterinary , Lipopolysaccharides/pharmacology , Male , Monocytes/drug effects , Superoxide Dismutase/blood
9.
Microorganisms ; 8(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092272

ABSTRACT

Herpesvirus of turkey (HVT) is commonly used as a vaccine to protect chickens against Marek's disease. Following vaccination, HVT infects feathers where it can be detected in all chicken lines examined. Unlike the parental Brown line (BL), Smyth line (SL) chickens develop vitiligo, due to autoimmune destruction of melanocytes in feathers. Previous reports showed a strong inflammatory response in Smyth chickens' feathers at vitiligo onset, that subsided once melanocytes were destroyed, and depigmentation was complete. Here, we questioned whether the local autoimmune response in the Smyth model influences HVT infection and persistence in feathers. For this, one-day-old SL and BL chickens were vaccinated with Newcastle disease (rHVT-ND). Vitiligo was scored and HVT loads in pigmented and non-pigmented growing feathers were quantified regularly over 20 weeks. Chickens of both lines showed moderate HVT loads in feathers. At the onset of active vitiligo, the HVT load was significantly higher in SL compared to BL feathers. However, no difference in HVT loads was noticed between pigmented and non-pigmented feathers from SL chickens. Therefore, surprisingly, the inflammatory response in feathers of SL chickens did not inhibit HVT infection and persistence, but on the contrary, temporarily promoted HVT infection in feathers.

10.
Front Microbiol ; 9: 2889, 2018.
Article in English | MEDLINE | ID: mdl-30555436

ABSTRACT

Environment and diet are two major factors affecting the human gut microbiome. In this study, we used a pig model to determine the impact of these two factors during lactation on the gut microbiome, immune system, and growth performance. We assigned 80 4-day-old pigs from 20 sows to two rearing strategies at lactation: conventional rearing on sow's milk (SR) or isolated rearing on milk replacer supplemented with solid feed starting on day 10 (IR). At weaning (day 21), SR and IR piglets were co-mingled (10 pens of 4 piglets/pen) and fed the same corn-soybean meal-dried distiller grain with solubles- and antibiotic-free diets for eight feeding phase regimes. Fecal samples were collected on day 21, 62, and 78 for next-generation sequencing of the V4 hypervariable region of the bacterial 16S rRNA gene. Results indicate that IR significantly increased swine microbial diversity and changed the microbiome structure at day 21. Such changes diminished after the two piglet groups were co-mingled and fed the same diet. Post-weaning growth performance also improved in IR piglets. Toward the end of the nursery period (NP), IR piglets had greater average daily gain (0.49 vs. 0.41 kg/d; P < 0.01) and average daily feed intake (0.61 vs. 0.59 kg/d; P < 0.01) but lower feed efficiency (0.64 vs. 0.68; P = 0.05). Consequently, IR piglets were heavier by 2.9 kg (P < 0.01) at the end of NP, and by 4.1 kg (P = 0.08) at market age compared to SR piglets. Interestingly, pigs from the two groups had similar lean tissue percentage. Random forest analysis showed that members of Leuconostoc and Lactococcus best differentiated the IR and SR piglets at weaning (day 21), were negatively correlated with levels of Foxp3 regulatory T cell populations on day 20, and positively correlated with post-weaning growth performance. Our results suggest that rearing strategies may be managed so as to accelerate early-life establishment of the swine gut microbiome to enhance growth performance in piglets.

11.
BMC Genomics ; 15: 707, 2014 Aug 23.
Article in English | MEDLINE | ID: mdl-25151476

ABSTRACT

BACKGROUND: The Smyth line (SL) chicken is the only animal model for autoimmune vitiligo that spontaneously displays all clinical and biological manifestations of the human disorder. To understand the genetic components underlying the susceptibility to develop SL vitiligo (SLV), whole genome resequencing analysis was performed in SLV chickens compared with non-vitiliginous parental Brown line (BL) chickens, which maintain a very low incidence rate of vitiligo. RESULTS: Illumina sequencing technology and reference based assembly on Red Jungle Fowl genome sequences were used. Results of genome resequencing of pooled DNA of each 10 BL and SL chickens reached 5.1x and 7.0x coverage, respectively. The total number of SNPs was 4.8 and 5.5 million in BL and SL genome, respectively. Through a series of filtering processes, a total of ~1 million unique SNPs were found in the SL alone. Eventually of the 156 reliable marker SNPs, which can induce non-synonymous-, frameshift-, nonsense-, and no-start mutations in amino acid sequences in proteins, 139 genes were chosen for further analysis. Of these, 14 randomly chosen SNPs were examined for SNP verification by PCR and Sanger sequencing to detect SNP positions in 20 BL and 70 SL chickens. The results of the analysis of the 14 SNPs clearly showed differential frequencies of nucleotide bases in the SNP positions between BL and SL chickens. Bioinformatic analysis showed that the 156 most reliable marker SNPs included genes involved in dermatological diseases/conditions such as ADAMTS13, ASPM, ATP6V0A2, BRCA2, COL12A1, GRM5, LRP2, OBSCN, PLAU, RNF168, STAB2, and XIRP1. Intermolecular gene network analysis revealed that candidate genes identified in SLV play a role in networks centered on protein kinases (MAPK, ERK1/2, PKC, PRKDC), phosphatase (PPP1CA), ubiquitinylation (UBC) and amyloid production (APP). CONCLUSIONS: Various potential genetic markers showing amino acid changes and potential roles in vitiligo development were identified in the SLV chicken through genome resequencing. The genetic markers and bioinformatic interpretations of amino acid mutations found in SLV chickens may provide insight into the genetic component responsible for the onset and the progression of autoimmune vitiligo and serve as valuable markers to develop diagnostic tools to detect vitiligo susceptibility.


Subject(s)
Chickens/genetics , Polymorphism, Single Nucleotide , Poultry Diseases/genetics , Vitiligo/veterinary , Animals , Avian Proteins/genetics , Computational Biology , Disease Models, Animal , Gene Regulatory Networks , Genome , Genome-Wide Association Study , Humans , Sequence Analysis, DNA , Vitiligo/genetics
12.
Poult Sci ; 93(2): 307-17, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24570451

ABSTRACT

A genome-wide SNP survey was used to identify chromosomal regions that showed linkage disequilibrium with respect to ascites susceptibility and ventricular hypertrophy in an F2 cross between previously described ascites-resistant and -susceptible lines. Variable number tandem repeats were used to obtain genotype data to further characterize these regions. A region on chromosome 9 (12 to 13 Mbp in 2011 assembly) shows association with ascites in the ascites lines and in several commercial broiler breeder lines with a significant sex effect. There are 2 candidate genes, AGTR1 (an angiotensin II type 1 receptor) and UTS2D (urotensin 2 domain containing), in this region that have been associated with hypertension and hypoxic response in mammals.


Subject(s)
Ascites/veterinary , Avian Proteins/genetics , Cardiomegaly/veterinary , Chickens , Peptide Hormones/genetics , Poultry Diseases/genetics , Receptor, Angiotensin, Type 1/genetics , Animals , Ascites/genetics , Avian Proteins/metabolism , Cardiomegaly/genetics , Disease Susceptibility/veterinary , Genome-Wide Association Study/veterinary , Linkage Disequilibrium , Peptide Hormones/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Receptor, Angiotensin, Type 1/metabolism
13.
J Food Prot ; 75(11): 1951-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23127703

ABSTRACT

Listeria monocytogenes continues to be a major foodborne pathogen that causes food poisoning, and sometimes death, among immunosuppressed people and abortion among pregnant women. In this study, magnetic nanoparticles with a diameter of 30 nm were functionalized with anti-L. monocytogenes antibodies via biotin-streptavidin bonds to become immunomagnetic nanoparticles (IMNPs) to capture L. monocytogenes in a sample during a 2-h immunoreaction. A magnetic separator was used to collect and hold the IMNPs-L. monocytogenes complex while the supernatants were removed. After the washing step, the nanoparticle-L. monocytogenes complex was separated from the sample and injected into a microfluidic chip. The impedance change caused by L. monocytogenes was measured by an impedance analyzer through the interdigitated microelectrode in the microfluidic chip. For L. monocytogenes in phosphate-buffered saline solution, up to 75% of the cells in the sample could be separated, and as few as three to five cells in the microfluidic chip could be detected, which is equivalent to 10(3) CFU/ml of cells in the original sample. The detection of L. monocytogenes was not interfered with by other major foodborne bacteria, including E. coli O157:H7, E. coli K-12, L. innocua, Salmonella Typhimurium, and Staphylococcus aureus. A linear correlation (R(2) = 0.86) was found between the impedance change and the number of L. monocytogenes in a range of 10(3) to 10(7) CFU/ml. Equivalent circuit analysis indicated that the impedance change was mainly due to the decrease in medium resistance when the IMNPs-L. monocytogenes complexes existed in mannitol solution. Finally, the immunosensor was evaluated with food sample tests; the results showed that, without preenrichment and labeling, 10(4) and 10(5) CFU/ml L. monocytogenes in lettuce, milk, and ground beef samples could be detected in 3 h.


Subject(s)
Antibodies, Bacterial/analysis , Food Contamination/analysis , Immunomagnetic Separation/methods , Listeria monocytogenes , Colony Count, Microbial , Consumer Product Safety , Food Microbiology , Humans , Listeria monocytogenes/immunology , Listeria monocytogenes/isolation & purification , Nanoparticles , Sensitivity and Specificity
14.
BMC Immunol ; 13: 18, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22500953

ABSTRACT

BACKGROUND: The Smyth line (SL) of chicken is an excellent avian model for human autoimmune vitiligo. The etiology of vitiligo is complicated and far from clear. In order to better understand critical components leading to vitiligo development, cDNA microarray technology was used to compare gene expression profiles in the target tissue (the growing feather) of SL chickens at different vitiligo (SLV) states. RESULTS: Compared to the reference sample, which was from Brown line chickens (the parental control), 395, 522, 524 and 526 out of the 44 k genes were differentially expressed (DE) (P ≤ 0.05) in feather samples collected from SL chickens that never developed SLV (NV), from SLV chickens prior to SLV onset (EV), during active loss of pigmentation (AV), and after complete loss of melanocytes (CV). Comparisons of gene expression levels within SL samples (NV, EV, AV and CV) revealed 206 DE genes, which could be categorized into immune system-, melanocyte-, stress-, and apoptosis-related genes based on the biological functions of their corresponding proteins. The autoimmune nature of SLV was supported by predominant presence of immune system related DE genes and their remarkably elevated expression in AV samples compared to NV, EV and/or CV samples. Melanocyte loss was confirmed by decreased expression of genes for melanocyte related proteins in AV and CV samples compared to NV and EV samples. In addition, SLV development was also accompanied by altered expression of genes associated with disturbed redox status and apoptosis. Ingenuity Pathway Analysis of DE genes provided functional interpretations involving but not limited to innate and adaptive immune response, oxidative stress and cell death. CONCLUSIONS: The microarray results provided comprehensive information at the transcriptome level supporting the multifactorial etiology of vitiligo, where together with apparent inflammatory/innate immune activity and oxidative stress, the adaptive immune response plays a predominant role in melanocyte loss.


Subject(s)
Autoimmune Diseases/genetics , Transcriptome , Vitiligo/genetics , Vitiligo/immunology , Animals , Chickens/genetics , Chickens/immunology , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , Humans , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Signal Transduction
15.
Avian Pathol ; 41(2): 211-9, 2012.
Article in English | MEDLINE | ID: mdl-22515539

ABSTRACT

Idiopathic pulmonary arterial hypertension (IPAH) is a disease of unknown cause that is characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance, and by extensive vascular remodelling. In human IPAH patients, remodelling of the pulmonary vasculature results in the formation of plexiform lesions in the terminal pulmonary arterioles. Various molecules are expressed in the human plexiform lesions, including alpha smooth muscle actin, von Willebrand factor, vascular endothelial growth factor, vascular endothelial growth factor receptor type 2, hypoxia inducible factor-1α, survivin, tenascin, collagen, fibronectin, and various immune/inflammatory cells such as, cytotoxic lymphocytes, B lymphocytes, MHC class II cells, and monocytes/macrophages are also present. Plexiform lesions rarely develop in the lungs of laboratory animals, but plexiform-like complex vascular lesions (CVL) do develop spontaneously in the lungs of broiler chickens from an IPAH-susceptible line. To examine angioproliferative and immune-system-related activities associated with CVL in broiler lungs, paraformaldehyde-fixed, paraffin-embedded lung sections from 8-week-old to 24-week-old broiler chickens were stained immunohistochemically using monoclonal or polyclonal antibodies specific for angioproliferative molecules and immune/inflammatory cells. The CVL in the lungs of broiler chickens exhibited positive staining for both angioproliferative molecules and immune/inflammatory cells. These observations combined with the close histological resemblance of broiler CVL to the plexiform lesions of human IPAH patients further validates chickens from our IPAH-susceptible line as an excellent animal model of spontaneous plexogenic arteriopathy.


Subject(s)
Chickens , Disease Models, Animal , Disease Susceptibility/veterinary , Hypertension, Pulmonary/veterinary , Lung/pathology , Poultry Diseases/pathology , Animals , Antibodies, Monoclonal , Disease Susceptibility/pathology , Familial Primary Pulmonary Hypertension , Humans , Hypertension, Pulmonary/pathology , Immunohistochemistry/veterinary , Lung/blood supply , Species Specificity
16.
J Invest Dermatol ; 132(3 Pt 1): 642-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22113479

ABSTRACT

The Smyth line (SL) of chicken is an excellent animal model for human autoimmune vitiligo. In SL vitiligo (SLV), postnatal loss of melanocytes in feathers appears to be due to cell-mediated immunity. In this study, leukocyte infiltration and associated expression (RNA) of immune function-related cytokines in growing feathers were investigated throughout SLV development and progression. Both leukocyte infiltration and cytokine expression levels started to increase near visible SLV onset (early SLV), reached peak levels during active SLV, and decreased to near pre-vitiligo levels after complete loss of melanocytes. Specifically, significant increases were noticed in relative proportions of T cells, B cells, and major histocompatibility complex (MHC) II-expressing cells during active SLV. Levels of T-cell infiltration were higher than those of B cells, with more CD8+ than CD4+ cells throughout SLV. Elevated leukocyte infiltration in early and active SLV was accompanied by increased levels of cytokine expression, especially in IFN-γ, IL-10, and IL-21. Low expression of IL-4 and IL-17 did not suggest important roles of Th2 and Th17 cells in SLV pathogenesis. Taken together, SLV appears to be a Th1-polarized autoimmune disease, whereby IFN-γ expression is strongly associated with parallel increases in IL-10 and IL-21, particularly during early and active stages of SLV.


Subject(s)
Autoimmune Diseases/immunology , Chickens/immunology , Disease Models, Animal , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Interleukins/biosynthesis , Vitiligo/immunology , Animals , Autoimmune Diseases/genetics , Chickens/genetics , Feathers/immunology , Feathers/metabolism , Genes, MHC Class II/immunology , Haplotypes , Homozygote , Humans , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Interleukin-4/biosynthesis , Interleukin-4/immunology , Interleukins/immunology , Leukocytes/immunology , Vitiligo/genetics
17.
Anat Rec (Hoboken) ; 294(5): 739-55, 2011 May.
Article in English | MEDLINE | ID: mdl-21448992

ABSTRACT

Plexiform lesions develop in the pulmonary arteries of humans suffering from idiopathic pulmonary arterial hypertension (IPAH). Plexogenic arteriopathy rarely develops in existing animal models of IPAH. In this study, plexiform lesions developed in the lungs of rapidly growing meat-type chickens (broiler chickens) that had been genetically selected for susceptibility to IPAH. Plexiform lesions developed spontaneously in: 42% of females and 40% of males; 35% of right lungs, and 45% of left lungs; and, at 8, 12, 16, 20, 24, and 52 weeks of age the plexiform lesion incidences averaged 52%, 50%, 51%, 40%, 36%, and 22%, respectively. Plexiform lesions formed distal to branch points in muscular interparabronchial pulmonary arteries exhibiting intimal proliferation. Perivascular mononuclear cell infiltrates consistently surrounded the affected arteries. Proliferating intimal cells fully or partially occluded the arterial lumen adjacent to plexiform lesions. Broilers reared in clean stainless steel cages exhibited a 50% lesion incidence that did not differ from the 64% incidence in flock mates grown on dusty floor litter. Microparticles (30 µm diameter) were injected to determine if physical occlusion and focal inflammation within distal pulmonary arteries might initiate plexiform lesion development. Three months postinjection no plexiform lesions were observed in the vicinity of persisting microparticles. Broiler chickens selected for innate susceptibility to IPAH represent a new animal model for investigating the mechanisms responsible for spontaneous plexogenic arteriopathy.


Subject(s)
Endothelium, Vascular/pathology , Lung/pathology , Poultry Diseases/pathology , Pulmonary Artery/pathology , Animals , Disease Susceptibility/pathology , Disease Susceptibility/veterinary , Familial Primary Pulmonary Hypertension , Female , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/veterinary , Incidence , Male , Poultry
18.
Am J Physiol Regul Integr Comp Physiol ; 298(1): R235-42, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19907003

ABSTRACT

Pulmonary hypertension syndrome (PHS; ascites) in fast growing meat-type chickens (broilers) is characterized by the onset of idiopathic pulmonary arterial hypertension (IPAH) leading to right-sided congestive heart failure and terminal ascites. Intravenous microparticle (MP) injection is a tool used by poultry geneticists to screen for the broilers that are resistant (RES) or susceptible (SUS) to IPAH in a breeding population. MPs occlude pulmonary arterioles and initiate focal inflammation, causing local tissues and responding leukocytes to release vasoactive mediators such as serotonin (5-HT), endothelin-1 (ET-1), and nitric oxide (NO). RT-PCR was used to examine the differences between RES and SUS broilers in terms of gene expression of ET-1, ET receptor types A and B (ET(A) and ET(B)), the serotonin transporter (SERT), serotonin receptors (5-HT(1A), 5-HT(2A), 5-HT(1B), 5-HT(2B)), endothelial NO synthase (eNOS), and inducible NOS (iNOS) in the lungs of these broilers before (0 h) and after (2, 6, 12, 24, and 48 h) MP injection. In SUS broilers MP injection elicited higher (P < 0.05) pulmonary expression of 5-HT(1A), 5-HT(2B), and ET-1, which promote vasoconstriction and proliferation of pulmonary arterial smooth muscle cells (PASMC). In RES broilers the MP injection elicited higher expression of eNOS, iNOS, and ET(B), which promote vasodilation and inhibit PASMC proliferation. These observations support the hypothesis that the resistance of broiler chickens to IPAH may be due to the higher expression of vasoactive mediators that favor enhanced vasodilation and attenuated vasoconstriction during MP injection challenges to the pulmonary vasculature.


Subject(s)
Disease Susceptibility/veterinary , Endothelin-1/metabolism , Hypertension, Pulmonary/veterinary , Lung/metabolism , Nitric Oxide/metabolism , Poultry Diseases/metabolism , Serotonin/metabolism , Animals , Chickens , Disease Susceptibility/diagnosis , Disease Susceptibility/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Injections, Intravenous , Lung/blood supply , Lung/physiopathology , Male , Mass Screening/methods , Microspheres , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Poultry Diseases/diagnosis , Poultry Diseases/genetics , Pulmonary Artery/physiopathology , Receptors, Endothelin/metabolism , Receptors, Serotonin/metabolism , Vasoconstriction/physiology , Vasodilation/physiology
19.
Vet Immunol Immunopathol ; 133(2-4): 250-5, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19698998

ABSTRACT

Intravenous injection of microparticles (MPs) is a tool to reveal susceptibility to pulmonary hypertension (PH) syndrome (PHS, ascites) in broilers. After injection MPs get lodged in pulmonary arterioles and cause localized inflammation. To examine the expression of chemokines/cytokines during the MP-induced pulmonary inflammatory response, lungs were collected from 4-week-old broilers (6/line/time point) from the PHS-resistant (RES) and -susceptible (SUS) broilers before (0h) and after (2, 6, 12, 24, and 48h) MP injection and analyzed using quantitative RT-PCR. In both lines, expression of interleukin-1beta (IL-1beta), IL-6, IL-8, and K60 increased from 0 to 6h, reached peak levels at 6 and 12h, and decreased thereafter, whereas IL-4 and interferon gamma (IFN-gamma) expression remained elevated past 12h. Lungs from the RES line broilers had higher expression (P<0.05) of IL-1beta and IL-6 at 2, 6, and 12h; higher IL-8 at 6 and 12h; higher K60 at 6, 12, and 24h; higher IL-4 at 12, 24, and 48h and higher IFN-gamma expression at 6 and 48h post-MP injection than SUS line broilers. Higher expression of chemokines/cytokines in RES compared to SUS line lungs may explain the ability of RES line broilers to effectively counteract the MP-induced PH and resolve the vascular occlusion.


Subject(s)
Chemokines/genetics , Chickens/genetics , Chickens/immunology , Cytokines/genetics , Poultry Diseases/genetics , Poultry Diseases/immunology , Animals , Ascites/genetics , Ascites/immunology , Ascites/veterinary , Base Sequence , Cellulose/administration & dosage , DNA Primers/genetics , Gene Expression , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/veterinary , Inflammation Mediators/metabolism , Injections, Intravenous , Lung/immunology , Male , Particle Size , Poultry Diseases/etiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Syndrome
20.
Adv Immunol ; 92: 71-117, 2006.
Article in English | MEDLINE | ID: mdl-17145302

ABSTRACT

Autoimmune diseases in human patients only become clinically manifest when the disease process has developed to a stage where functional compensation by the afflicted organ or system is not possible anymore. In order to understand the initial etiologic and pathogenic events that are generally not yet accessible in humans, appropriate animal models are required. In this respect, spontaneously developing models--albeit rare--reflect the situation in humans much more closely than experimentally induced models, including knockout and transgenic mice. The present chapter describes three spontaneous chicken models for human autoimmune diseases, the Obese strain (OS) with a Hashimoto-like autoimmune thyroiditis, the University of California at Davis lines 200 and 206 (UCD-200 and -206) with a scleroderma-like disease, and the amelanotic Smyth line with a vitiligo-like syndrome (SLV). Special emphasis is given to the new opportunities to unravel the genetic basis of these diseases in view of the recently completed sequencing of the chicken genome.


Subject(s)
Autoimmune Diseases/immunology , Chickens/immunology , Disease Models, Animal , Animals , Autoimmune Diseases/genetics , Chickens/genetics , Hashimoto Disease/immunology , Humans , Scleroderma, Systemic/immunology , Vitiligo/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...