Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Assoc Lab Anim Sci ; 61(5): 468-474, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36008090

ABSTRACT

The Guide for the Care and Use of Laboratory Animals strongly encourages the use of pharmaceutical-grade chemicals and analgesics. Sustained-release buprenorphine (SRB) is administered extralabel to rodents to mitigate moderate to severe pain. An FDA-indexed buprenorphine formulation-extended-release buprenorphine (XRB)-has recently become available and is currently the only pharmaceutical-grade slow-release buprenorphine formulation approved for use in mice and rats. However, no studies have directly compared the pharmacokinetic parameters of SRB and XRB in surgically catheterized mice. To this end, we compared the plasma buprenorphine concentrations and pharmacokinetic parameters of SRB and XRB in mice after surgical catheterization. We hypothesized that mice treated before surgery with SRB or XRB would have circulating buprenorphine concentrations that exceeded the therapeutic threshold for as long as 72 h after surgery. Male and female C57Bl/6J mice were anesthetized, treated with a single dose of either SRB (1 mg/kg SC) or XRB (3.25 mg/kg SC), and underwent surgical catheterization. Arterial blood samples were collected at 6, 24, 48, and 72 h after administration. Weight loss after surgery (mean ± SEM) was similar between groups (SRB: males, 12% ± 2%; females, 8% ± 2%; XRB: males, 12% ± 1%; females, 8% ± 1%). Both SRB and XRB maintained circulating buprenorphine concentrations above the therapeutic level of 1.0 ng/mL for 72 h after administration. Plasma buprenorphine concentrations at 6, 24, and 48 h were significantly greater (3- to 4-fold) with XRB than SRB, commensurate with XRB's higher dose. These results support the use of either SRB or XRB for the alleviation of postoperative pain in mice. The availability of FDA-indexed XRB increases options for safe and effective pharmaceutical-grade analgesia in rodents.


Subject(s)
Buprenorphine , Analgesics/therapeutic use , Analgesics, Opioid , Animals , Catheterization/veterinary , Delayed-Action Preparations , Female , Male , Mice , Mice, Inbred C57BL , Pain, Postoperative/drug therapy , Pain, Postoperative/veterinary , Rats
2.
J Am Assoc Lab Anim Sci ; 54(6): 694-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26632778

ABSTRACT

An important task facing both researchers and animal core facilities is producing sufficient mice for a given project. The inherent biologic variability of mouse reproduction and litter size further challenges effective research planning. A lack of precision in project planning contributes to the high cost of animal research, overproduction (thus waste) of animals, and inappropriate allocation of facility resources. To examine the extent daily prepartum maternal weight gain predicts litter size in 2 commonly used mouse strains (BALB/cJ and C57BL/6J) and one mouse stock (Swiss Webster), we weighed ≥ 25 pregnant dams of each strain or stock daily from the morning on which a vaginal plug (day 0) was present. On the morning when dams delivered their pups, we recorded the weight of the dam, the weight of the litter itself, and the number of pups. Litter sizes ranged from 1 to 7 pups for BALB/cJ, 2 to 13 for Swiss Webster, and 5 to 11 for C57BL/6J mice. Linear regression models (based on weight change from day 0) demonstrated that maternal weight gain at day 9 (BALB/cJ), day 11 (Swiss Webster), or day 14 (C57BL/6J) was a significant predictor of litter size. When tested prospectively, the linear regression model for each strain or stock was found to be accurate. These data indicate that the number of pups that will be born can be estimated accurately by using maternal weight gain at specific or stock-specific time points.


Subject(s)
Body Weight , Litter Size , Mice/physiology , Pregnancy, Animal/physiology , Animals , Female , Linear Models , Mice/classification , Mice, Inbred BALB C , Mice, Inbred C57BL , Pregnancy , Reproduction , Weight Gain
3.
Vet Microbiol ; 168(1): 169-76, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24315039

ABSTRACT

Dogs can be infected by a wide variety of Bartonella species. However, limited data is available on experimental infection of dogs with Bartonella strains isolated from domestic animals or wildlife. We report the inoculation of six dogs with Bartonella henselae (feline strain 94022, 16S rRNA type II) in three sets of two dogs, each receiving a different inoculum dose), four dogs inoculated with B. vinsonii subsp. berkhoffii type I (ATCC strain, one mongrel dog) or type II (coyote strain, two beagles and one mongrel) and B. rochalimae (coyote strain, two beagles). None of the dogs inoculated with B. henselae became bacteremic, as detected by classical blood culture. However, several dogs developed severe necrotic lesions at the inoculation site and all six dogs seroconverted within one to two weeks. All dogs inoculated with the B. v. berkhoffii and B. rochalimae strains became bacteremic at levels comparable to previous experimental infections with either a dog isolate or a human isolate. Our data support that dogs are likely accidental hosts for B. henselae, just like humans, and are efficient reservoirs for both B. v. berkhoffii and B. rochalimae.


Subject(s)
Bartonella Infections/veterinary , Bartonella/physiology , Disease Reservoirs/microbiology , Dog Diseases/microbiology , Host-Pathogen Interactions , Animals , Antibodies, Bacterial/blood , Bacteremia/veterinary , Bartonella/classification , Bartonella/isolation & purification , Bartonella Infections/microbiology , Bartonella Infections/pathology , Cats , Dog Diseases/pathology , Dogs , Female , Humans , Male
9.
Environ Health Perspect ; 111(2): 239-44, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12573913

ABSTRACT

Food allergy can present as immediate hypersensitivity [manifestations mediated by immunoglobulin (Ig)E], delayed-type hypersensitivity (reactions associated with specific T lymphocytes), and inflammatory reactions caused by immune complexes. For reasons of ethics and efficacy, investigations in humans to determine sensitization and allergic responses of IgE production to innocuous food proteins are not feasible. Therefore, animal models are used a) to bypass the innate tendency to develop tolerance to food proteins and induce specific IgE antibody of sufficient avidity/affinity to cause sensitization and upon reexposure to induce an allergic response, b) to predict allergenicity of novel proteins using characteristics of known food allergens, and c) to treat food allergy by using immunotherapeutic strategies to alleviate life-threatening reactions. The predominant hypothesis for IgE-mediated food allergy is that there is an adverse reaction to exogenous food proteins or food protein fragments, which escape lumen hydrolysis, and in a polarized helper T cell subset 2 (Th2) environment, immunoglobulin class switching to allergen-specific IgE is generated in the immune system of the gastrointestinal-associated lymphoid tissues. Traditionally, the immunologic characterization and toxicologic studies of small laboratory animals have provided the basis for development of animal models of food allergy; however, the natural allergic response in large animals, which closely mimic allergic diseases in humans, can also be useful as models for investigations involving food allergy.


Subject(s)
Disease Models, Animal , Food Hypersensitivity/physiopathology , Proteins/immunology , Allergens/immunology , Animals , Animals, Laboratory , Animals, Newborn , Dogs , Food Hypersensitivity/veterinary , Humans , Hydrolysis , Immunoglobulin E/immunology , Inflammation , Organisms, Genetically Modified , Proteins/adverse effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL