Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Struct ; 1243: 130705, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34031619

ABSTRACT

We have used bioinformatics to identify drugs for the treatment of COVID-19, using drugs already being tested for the treatment as benchmarks like Remdesivir and Chloroquine. Our findings provide further support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising new targets that merit further investigation. In addition, the epoxidation of Parthenolide 1 using peracids, has been scrutinized within the MEDT at the B3LYP/6-311(d,p) computational level. DFT results showed a high chemoselectivity on the double bond C3[bond, double bond]C4, in full agreement with the experimental outcomes. ELF analysis demonstrated that epoxidation reaction took place through a one-step mechanism, in which the formation of the two new C-O single bonds is somewhat asynchronous.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119424, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33461130

ABSTRACT

In the present study novel 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazol-5(4H)-one (compound (4)) and 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazole-5(4H)-thione (compound (5)) were synthesized. These oxadiazole ring derivatives were characterized by IR, 1H NMR, 13C NMR and HRMS analyses. The solvent effects on CO, CN and CS stretching vibrational frequencies (ν(CO), ν(CN) and ν(CS)) of synthesized compounds were investigated experimentally using attenuated total reflection (ATR) infrared spectroscopy and compared with the theoretical results assigned using the potential energy distribution (PED) contributions. Furthermore, the ν(CO), ν(CN) and ν(CS) of compound (4) and compound (5) were correlated with empirical solvent parameters such as the solvent acceptor numbers, the Swain equation, the Kirkwood-Bauer-Magat equation, and the linear solvation energy relationships. Apart from the linear effects investigated in similar studies, solvent-induced vibrational shifts were investigated using the quadratic equation. The prediction capabilities of empirical solvent parameters were statistically compared. It was found that the linear solvation energy relationships show better correlation than the other empirical solvent parameters. Additionally, the quadratic equation provided more accurate predictions for the vibrational frequency locations than the Swain and the linear solvation energy relationships equations.

3.
J Mol Graph Model ; 102: 107760, 2021 01.
Article in English | MEDLINE | ID: mdl-33130389

ABSTRACT

In the present paper, an investigation about the [3 + 2]cycloaddition (32 C A) reactions of benzonitrile oxide with 1-trifluoromethyl-4-vinyl-benzene, and with 1-methyl-4-vinyl-benzene, using the Molecular Electron Density Theory (MEDT) through DFT/B3LYP/6-311++G (d,p), is performed. A deep mechanistic study beside an accurate electronic description of different stationary points along the IRC paths of the two 32 C A reactions have performed by examining the two competitive regioisomericortho/metareaction pathways, and providing the mechanism associated with them. The presence of the CF3 group reduces the activation energy, which makes it possible to increase the experimental yield of the reaction in good agreement with the experimental results. Addition of solvent (THF) does not affected the regioselectivity of the studied reactions. Evaluation of the ELF of selected structures of the IRC related with the formation of C-O and C-C single bonds designates that these 32 C A reactions take place through a one-step, two-stage mechanism.


Subject(s)
Benzene , Electrons , Cycloaddition Reaction , Models, Molecular , Solvents
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 188: 443-455, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-28756260

ABSTRACT

The equilibrium geometry, nuclear magnetic resonance (NMR) and UV-Vis analysis, and vibrational frequencies for the azo and hydrazone isomers of 1,3-dimethyl-5-(phenylazo)-6-aminouracil have been performed using density functional theory (DFT/B3LYP) method with 6-311G(d,p) basis set. A detailed interpretation of the vibrational spectra has been made on the basis of the calculated potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA4) program. The 1H NMR chemical shifts with respect to TMS were calculated by the gauge independent atomic orbital (GIAO) method and compared with the experimental data. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Using the TD-DFT method, electronic absorption spectra in CHCl3 solvent of the title compound have been predicted, and good agreement is determined with the experimental one. The NLO properties such as mean polarizability (⟨α⟩), the anisotropy of the polarizability (⟨Δα⟩) and the mean first-order hyperpolarizability (⟨ß⟩) were computed by using finite field method. The computed values of µ, α and ß for the azo and hydrazone forms of the title molecule are 5.4717 and 3.8905 D, 2.7773×10-23 and 2.7598×10-23esu, and 3.4499×10-30 and 6.8504×10-30esu, respectively. The high ß values and non-zero values of µ indicate that the title compound might be a good candidate for NLO material.

5.
Article in English | MEDLINE | ID: mdl-20167532

ABSTRACT

The molecular structure, linear and nonlinear optical properties, and electronic properties of 4,5-diphenyl-2-2 oxazole propionic acid (oxaprozin) as a monomer were investigated by using Hartree-Fock (HF) and density functional theory (DFT) calculations that used 6-31G(d,p) basis set. The first-order hyperpolarizability of oxaprozin (OXA) was found to be 1.117 x 10(-30) esu. The structure of oxaprozin dimer with HF/6-31G(d) level caused by the shifts of O-H and CO bands in the vibrational spectra of oxaprozin were also studied. Moreover, these calculated frequencies of oxaprozin dimer were compared with the solid FT-IR and FT-Raman spectra. The theoretical frequencies and infrared intensities were showed a good agreement with experimental data.


Subject(s)
Propionates/chemistry , Vibration , Crystallography, X-Ray , Dimerization , Electrons , Molecular Conformation , Oxaprozin , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL