Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
EMBO Rep ; 25(9): 3896-3924, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39048751

ABSTRACT

The Bcl-2 family controls apoptosis by direct interactions of pro- and anti-apoptotic proteins. The principle mechanism is binding of the BH3 domain of pro-apoptotic proteins to the hydrophobic groove of anti-apoptotic siblings, which is therapeutically exploited by approved BH3-mimetic anti-cancer drugs. Evidence suggests that also the transmembrane domain (TMD) of Bcl-2 proteins can mediate Bcl-2 interactions. We developed a highly-specific split luciferase assay enabling the analysis of TMD interactions of pore-forming apoptosis effectors BAX, BAK, and BOK with anti-apoptotic Bcl-2 proteins in living cells. We confirm homotypic interaction of the BAX-TMD, but also newly identify interaction of the TMD of anti-apoptotic BCL-2 with the TMD of BOK, a peculiar pro-apoptotic Bcl-2 protein. BOK-TMD and BCL-2-TMD interact at the endoplasmic reticulum. Molecular dynamics simulations confirm dynamic BOK-TMD and BCL-2-TMD dimers and stable heterotetramers. Mutation of BCL-2-TMD at predicted key residues abolishes interaction with BOK-TMD. Also, inhibition of BOK-induced apoptosis by BCL-2 depends specifically on their TMDs. Thus, TMDs of Bcl-2 proteins are a relevant interaction interface for apoptosis regulation and provide a novel potential drug target.


Subject(s)
Apoptosis , Protein Binding , Protein Domains , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/chemistry , Humans , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics , Molecular Dynamics Simulation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Endoplasmic Reticulum/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/chemistry , Protein Interaction Domains and Motifs , Protein Multimerization
2.
Cell Death Dis ; 15(4): 290, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658567

ABSTRACT

High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.


Subject(s)
Activating Transcription Factor 3 , Cisplatin , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Ovarian Neoplasms , Humans , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Female , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects
3.
Front Oncol ; 13: 1190988, 2023.
Article in English | MEDLINE | ID: mdl-37305581

ABSTRACT

Introduction: Malignant pleural mesothelioma (MPM) is a neoplasm with dismal prognosis and notorious resistance to the standard therapeutics cisplatin and pemetrexed. Chalcone derivatives are efficacious anti-cancer agents with minimal toxicity and have, therefore, gained pharmaceutical interest. Here, we investigated the efficacy of CIT-026 and CIT-223, two indolyl-chalcones (CITs), to inhibit growth and viability of MPM cells and defined the mechanism by which the compounds induce cell death. Methods: The effects of CIT-026 and CIT-223 were analyzed in five MPM cell lines, using viability, immunofluorescence, real-time cell death monitoring, and tubulin polymerization assays, along with siRNA knockdown. Phospho-kinase arrays and immunoblotting were used to identify signaling molecules that contribute to cell death. Results: CIT-026 and CIT-223 were toxic in all cell lines at sub-micromolar concentrations, in particular in MPM cells resistant to cisplatin and pemetrexed, while normal fibroblasts were only modestly affected. Both CITs targeted tubulin polymerization via (1) direct interaction with tubulin and (2) phosphorylation of microtubule regulators STMN1, CRMP2 and WNK1. Formation of aberrant tubulin fibers caused abnormal spindle morphology, mitotic arrest and apoptosis. CIT activity was not reduced in CRMP2-negative and STMN1-silenced MPM cells, indicating that direct tubulin targeting is sufficient for toxic effects of CITs. Discussion: CIT-026 and CIT-223 are highly effective inducers of tumor cell apoptosis by disrupting microtubule assembly, with only modest effects on non-malignant cells. CITs are potent anti-tumor agents against MPM cells, in particular cells resistant to standard therapeutics, and thus warrant further evaluation as potential small-molecule therapeutics in MPM.

4.
Cell Biosci ; 12(1): 50, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477555

ABSTRACT

BACKGROUND: Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. RESULTS: We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. CONCLUSION: PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.

5.
Cell Death Discov ; 8(1): 215, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35443750

ABSTRACT

Enhanced expression of anti-apoptotic B-cell lymphoma 2 (BCL-2) protein is frequent in cancer. Targeting of BCL-2 with the specific inhibitor ABT-199 (Venetoclax) has significant clinical activity in malignant diseases such as chronic lymphocytic leukemia and multiple myeloma. The small molecule drug ABT-199 mimics the pro-apoptotic BCL-2 homology domain 3 of BH3-only proteins and blocks the hydrophobic BC-groove in BCL-2. We have previously shown that ABT-199 synergizes with the proteasome inhibitor (PI) bortezomib in soft tissue sarcoma derived cells and cell lines to induce apoptosis. Synergistic apoptosis induction relies on the pore-forming effector BAX and expression of the pro-apoptotic BH3-only protein NOXA. Bortezomib augments expression of NOXA by blocking its proteasomal degradation. Interestingly, shown here for the first time, expression of NOXA is strongly enhanced by ABT-199 induced integrated stress response (ISR). ISR transcription factors ATF3 & ATF4 mediate transactivation of the BH3-only protein NOXA which specifically inhibits the anti-apoptotic MCL-1. Thus, NOXA potentiates the efficacy of the BCL-2 inhibitor ABT-199 by simultaneous inhibition of MCL-1. Hence, ABT-199 has a double impact by directly blocking anti-apoptotic BCL-2 and inhibiting MCL-1 via transactivated NOXA. By preventing degradation of NOXA PIs synergize with ABT-199. Synergism of ABT-199 and PIs therefore occurs on several, previously unexpected levels. This finding should prompt clinical evaluation of combinatorial regimens in further malignancies.

6.
BMC Cancer ; 21(1): 971, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34461853

ABSTRACT

BACKGROUND: Photodynamic therapy with a photosensitizer such as protoporphyrin-IX, a light sensitive metabolite of heme synthesis, is a highly selective treatment for various carcinomas. In previous studies, we found a significant down regulation of the relevant enzyme ferrochelatase in gastrointestinal carcinomas leading to an accumulation of protoporphyrin-IX within the tumor cells. Recent studies showed that a novel anti-cancer drug, Alectinib, an orally available, highly selective, potent second-generation inhibitor of anaplastic lymphoma tyrosinkinase binds to ferrochelatase. Therefore, we were interested to see whether Alectinib treatment might lead to an accumulation of protoporphyrin IX. METHODS: Tumor cells of different origin were cultured, treated with LED-light and Alectinib. Results were gained by flow cytometry, immunohistochemistry and western blotting. Apoptosis was determined by flow cytometric analysis of Annexin V-FITC stained cells. In addition, cells were counterstained with propidium iodide to distinguish early apoptotic cells and late apoptotic/necrotic cells. RESULTS: Here, we report that photodynamic treatment of tumor cell lines of different origin in combination with Alectinib increased protoporphyrin-IX specific fluorescence and concomitantly cell death. CONCLUSIONS: The usage of Alectinib could be another step for enhancing the effectiveness of photodynamic therapy. Further experiments will show whether photodynamic therapy in combination with Alectinib could be a new strategy for the treatment of e.g. peritoneal disseminated carcinomas.


Subject(s)
Aminolevulinic Acid/pharmacology , Carbazoles/pharmacology , Light , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Piperidines/pharmacology , Protoporphyrins/metabolism , Fluorescence , Humans , Neoplasms/pathology , Tumor Cells, Cultured
7.
Cell Death Dis ; 12(8): 736, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312366

ABSTRACT

Hepatocellular carcinoma (HCC) represents a global health challenge with limited therapeutic options. Anti-angiogenic immune checkpoint inhibitor-based combination therapy has been introduced for progressed HCC, but improves survival only in a subset of HCC patients. Tyrosine-kinase inhibitors (TKI) such as sorafenib represent an alternative treatment option but have only modest efficacy. Using different HCC cell lines and HCC tissues from various patients reflecting HCC heterogeneity, we investigated whether the sorafenib response could be enhanced by combination with pro-apoptotic agents, such as TNF-related apoptosis-inducing ligand (TRAIL) or the BH3-mimetic ABT-737, which target the death receptor and mitochondrial pathway of apoptosis, respectively. We found that both agents could enhance sorafenib-induced cell death which was, however, dependent on specific BH3-only proteins. TRAIL augmented sorafenib-induced cell death only in NOXA-expressing HCC cells, whereas ABT-737 enhanced the sorafenib response also in NOXA-deficient cells. ABT-737, however, failed to augment sorafenib cytotoxicity in the absence of BIM, even when NOXA was strongly expressed. In the presence of NOXA, BIM-deficient HCC cells could be in turn strongly sensitized for cell death induction by the combination of sorafenib with TRAIL. Accordingly, HCC tissues sensitive to apoptosis induction by sorafenib and TRAIL revealed enhanced NOXA expression compared to HCC tissues resistant to this treatment combination. Thus, our results suggest that BH3-only protein expression determines the treatment response of HCC to different sorafenib-based drug combinations. Individual profiling of BH3-only protein expression might therefore assist patient stratification to certain TKI-based HCC therapies.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Sorafenib/therapeutic use , Apoptosis/drug effects , Bcl-2-Like Protein 11/metabolism , Biphenyl Compounds/pharmacology , Carcinoma, Hepatocellular/pathology , Caspases/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Activation/drug effects , Humans , Ki-67 Antigen/metabolism , Liver Neoplasms/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Nitrophenols/pharmacology , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Sorafenib/pharmacology , Sulfonamides/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology
8.
Cell Death Dis ; 11(8): 701, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32839432

ABSTRACT

Soft tissue sarcomas (STS) are a heterogeneous group of malignancies predominantly affecting children and young adults. Despite improvements in multimodal therapies, 5-year survival rates are only 50% and new treatment options in STS are urgently needed. To develop a rational combination therapy for the treatment of STS we focused on ABT-199 (Venetoclax), a BCL-2 specific BH3-mimetic, in combination with the proteasome inhibitor bortezomib (BZB). Simultaneous inhibition of BCL-2 and the proteasome resulted in strongly synergistic apoptosis induction. Mechanistically, ABT-199 mainly affected the multidomain effector BAX by liberating it from BCL-2 inhibition. The combination with BZB additionally resulted in the accumulation of BOK, a BAX/BAK homologue, and of the BH3-only protein NOXA, which inhibits the anti-apoptotic protein MCL-1. Thus, the combination of ABT-199 and BZB sensitizes STS cells to apoptosis by simultaneously releasing several defined apoptotic restraints. This synergistic mechanism of action was verified by CRISPR/Cas9 knock-out, showing that both BAX and NOXA are crucial for ABT-199/BZB-induced apoptosis. Noteworthy, efficient induction of apoptosis by ABT-199/BZB was not affected by the p53 status and invariably detected in cell lines and patient-derived tumor cells of several sarcoma types, including rhabdomyo-, leiomyo-, lipo-, chondro-, osteo-, or synovial sarcomas. Hence, we propose the combination of ABT-199 and BZB as a promising strategy for the treatment of STS, which should warrant further clinical investigation.


Subject(s)
Bortezomib/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Sarcoma/drug therapy , Sulfonamides/pharmacology , Adult , Aged , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins , Biphenyl Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Cell Line, Tumor , Drug Synergism , Female , Humans , Male , Middle Aged , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Nitrophenols/pharmacology , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Sarcoma/metabolism , Sulfonamides/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
9.
J Invest Dermatol ; 140(9): 1805-1814.e6, 2020 09.
Article in English | MEDLINE | ID: mdl-32035922

ABSTRACT

Transcription factors of the NF-κB family play a crucial role for immune responses by activating the expression of chemokines, cytokines, and antimicrobial peptides involved in pathogen clearance. IκBζ, an atypical nuclear IκB protein and selective coactivator of particular NF-κB target genes, has recently been identified as an essential regulator for skin immunity. This study discovered that IκBζ is strongly induced in keratinocytes that sense the fungal glucan zymosan A. Additionally, IκBζ is essential for the optimal expression of proinflammatory genes, such as IL6, CXCL5, IL1B, or S100A9. Moreover, this study found that IκBζ was not solely regulated on the transcriptional level but also by phosphorylation events. This study identified several IκBζ phosphorylation sites, including a conserved cluster of threonine residues located in the N-terminus of the protein, which can be phosphorylated by MAPKs. Surprisingly, IκBζ phosphorylation at this threonine cluster promoted the recruitment of histone deacetylase 1 to specific target gene promoters and, thus, negatively controlled transcription. Taken together, this study proposes a model of how an antifungal response translates to the expression of proinflammatory cytokines and highlights an additional layer of complexity in the regulation of the NF-κB responses in keratinocytes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation/immunology , Inflammation Mediators/metabolism , Skin/immunology , Adaptor Proteins, Signal Transducing/genetics , Cells, Cultured , Fungal Polysaccharides/immunology , Histone Deacetylase 1/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Keratinocytes/immunology , Keratinocytes/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/genetics , Phosphorylation/immunology , Primary Cell Culture , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational/immunology , Skin/cytology , Skin/metabolism , Threonine/genetics , Threonine/metabolism , Transcription, Genetic/immunology , Zymosan/immunology
10.
Cell Death Dis ; 10(11): 851, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31699970

ABSTRACT

Patients with high-grade serous ovarian cancer (HGSC) frequently receive platinum-based chemotherapeutics, such as cisplatin. Cisplatin binds to DNA and induces DNA-damage culminating in mitochondria-mediated apoptosis. Interestingly, mitochondrial DNA is critically affected by cisplatin but its relevance in cell death induction is scarcely investigated. We find that cisplatin sensitive HGSC cell lines contain higher mitochondrial content and higher levels of mitochondrial ROS (mtROS) than cells resistant to cisplatin induced cell death. In clonal sub-lines from OVCAR-3 mitochondrial content and basal oxygen consumption rate correlate with sensitivity to cisplatin induced apoptosis. Mitochondria are in two ways pivotal for cisplatin sensitivity because not only knock-down of BAX and BAK but also the ROS scavenger glutathione diminish cisplatin induced apoptosis. Mitochondrial ROS correlates with mitochondrial content and reduction of mitochondrial biogenesis by knock-down of transcription factors PGC1α or TFAM attenuates both mtROS induction and cisplatin induced apoptosis. Increasing mitochondrial ROS by inhibition or knock-down of the ROS-protective uncoupling protein UCP2 enhances cisplatin induced apoptosis. Similarly, enhancing ROS by high-dose ascorbic acid or H2O2 augments cisplatin induced apoptosis. In summary, mitochondrial content and the resulting mitochondrial capacity to produce ROS critically determine HGSC cell sensitivity to cisplatin induced apoptosis. In line with this observation, data from the human protein atlas (www.proteinatlas.org) indicates that high expression of mitochondrial marker proteins (TFAM and TIMM23) is a favorable prognostic factor in ovarian cancer patients. Thus, we propose mitochondrial content as a biomarker for the response to platinum-based therapies. Functionally, this might be exploited by increasing mitochondrial content or mitochondrial ROS production to enhance sensitivity to cisplatin based anti-cancer therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/metabolism , Cisplatin/pharmacology , Mitochondria/pathology , Ovarian Neoplasms/pathology , Reactive Oxygen Species/metabolism , DNA Damage , Drug Resistance, Neoplasm , Female , Humans , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Prognosis , Tumor Cells, Cultured
11.
Arch Toxicol ; 93(8): 2247-2264, 2019 08.
Article in English | MEDLINE | ID: mdl-31312845

ABSTRACT

Prediction of drug interactions, based on the induction of drug disposition, calls for the identification of chemicals, which activate xenosensing nuclear receptors. Constitutive androstane receptor (CAR) is one of the major human xenosensors; however, the constitutive activity of its reference variant CAR1 in immortalized cell lines complicates the identification of agonists. The exclusively ligand-dependent isoform CAR3 represents an obvious alternative for screening of CAR agonists. As CAR3 is even more abundant in human liver than CAR1, identification of its agonists is also of pharmacological value in its own right. We here established a cellular high-throughput screening assay for CAR3 to identify ligands of this isoform and to analyse its suitability for identifying CAR ligands in general. Proof-of-concept screening of 2054 drug-like compounds at 10 µM resulted in the identification of novel CAR3 agonists. The CAR3 assay proved to detect the previously described CAR1 ligands in the screened libraries. However, we failed to detect CAR3-selective compounds, as the four novel agonists, which were selected for further investigations, all proved to activate CAR1 in different cellular and in vitro assays. In primary human hepatocytes, the compounds preferentially induced the expression of the prototypical CAR target gene CYP2B6. Failure to identify CAR3-selective compounds was investigated by molecular modelling, which showed that the isoform-specific insertion of five amino acids did not impact on the ligand binding pocket but only on heterodimerization with retinoid X receptor. In conclusion, we demonstrate here the usability of CAR3 for screening compound libraries for the presence of CAR agonists.


Subject(s)
Hepatocytes/drug effects , High-Throughput Screening Assays/methods , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/chemistry , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Clopidogrel/pharmacology , Constitutive Androstane Receptor , Cytochrome P-450 CYP2B6/genetics , Gene Expression Regulation/drug effects , HEK293 Cells , Hepatocytes/physiology , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Proof of Concept Study , Protein Isoforms , Protein Transport/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism
12.
Sci Rep ; 8(1): 12434, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127460

ABSTRACT

Central to intrinsic apoptosis signaling is the release of cytochrome c from mitochondria, which depends on the pro-apoptotic effector proteins Bax, Bak or Bok. These pore-forming effector proteins share four Bcl-2 homology (BH) domains, a functionally essential and conserved sequence of hydrophobic amino acids in their BH3-domain and a C-terminal transmembrane-domain whose specific function remains rather unknown. To elucidate the molecular basis of Bok-mediated apoptosis we analyzed apoptosis induction by transmembrane-domain deficient BokΔTM compared to the respective Bax and Bak proteins and proteins in which the first leucine in the BH3-stretch was mutated to glutamic acid. We show that deletion of the C-terminal transmembrane-domain reduces the pro-apoptotic function of each protein. Mutation of the first leucine in the BH3-domain (L78E) blocks activity of Bak, while mutation of the homologue residues in Bax or Bok (L63E and L70E respectively) does not affect apoptosis induction. Unexpectedly, combined mutation of the BH3-domain and deletion of the transmembrane-domain enhances the pro-apoptotic activity of Bok(L70E)ΔTM by abolishing the interaction with anti-apoptotic proteins, especially the primary Bok-inhibitory protein Mcl-1. These results therefore suggest a specific contribution of the transmembrane-domain to the pro-apoptotic function and interaction of Bok.


Subject(s)
Protein Domains/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cell Line, Tumor , HCT116 Cells , HEK293 Cells , Humans , MCF-7 Cells , Membrane Proteins/metabolism , Mice, Knockout , Mitochondria/metabolism
13.
J Biol Chem ; 292(16): 6478-6492, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28154184

ABSTRACT

Renal cell carcinoma (RCC) is polyresistant to chemo- and radiotherapy and biologicals, including TNF-related apoptosis-inducing ligand (TRAIL). Sorafenib, a multikinase inhibitor approved for the treatment of RCC, has been shown to sensitize cancer cells to TRAIL-induced apoptosis, in particular by down-regulation of the Bak-inhibitory Bcl-2 family protein Mcl-1. Here we demonstrate that sorafenib overcomes TRAIL resistance in RCC by a mechanism that does not rely on Mcl-1 down-regulation. Instead, sorafenib induces rapid dissipation of the mitochondrial membrane potential (ΔΨm) that is accompanied by the accumulation of reactive oxygen species (ROS). Loss of ΔΨm and ROS production induced by sorafenib are independent of caspase activities and do not depend on the presence of the proapoptotic Bcl-2 family proteins Bax or Bak, indicating that both events are functionally upstream of the mitochondrial apoptosis signaling cascade. More intriguingly, we find that it is sorafenib-induced ROS accumulation that enables TRAIL to activate caspase-8 in RCC. This leads to apoptosis that involves activation of an amplification loop via the mitochondrial apoptosis pathway. Thus, our mechanistic data indicate that sorafenib bypasses central resistance mechanisms through a direct induction of ΔΨm breakdown and ROS production. Activation of this pathway might represent a useful strategy to overcome the cell-inherent resistance to cancer therapeutics, including TRAIL, in multiresistant cancers such as RCC.


Subject(s)
Carcinoma, Renal Cell/metabolism , Drug Resistance, Neoplasm , Kidney Neoplasms/metabolism , Mitochondria/metabolism , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis , Carcinoma, Renal Cell/drug therapy , Caspase 8/metabolism , Cell Line, Tumor , Down-Regulation , Enzyme Activation , Flow Cytometry , Humans , Kidney Neoplasms/drug therapy , Membrane Potential, Mitochondrial , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Niacinamide/pharmacology , Protein Conformation , RNA, Small Interfering/metabolism , Signal Transduction , Sorafenib , TNF-Related Apoptosis-Inducing Ligand/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
14.
Oncotarget ; 8(68): 112417-112425, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29348835

ABSTRACT

DNA damage and changes in the mitochondrial DNA content have been implicated in ageing and cancer development. To prevent genomic instability and tumorigenesis, cells must maintain the integrity of their nuclear and mitochondrial DNA. Advances in the research of DNA damage protection and genomic stability, however, also depend on the availability of techniques that can reliably quantify alterations of mitochondrial DNA copy numbers and DNA lesions in an accurate high-throughput manner. Unfortunately, no such method has been established yet. Here, we describe the high-sensitivity long-run real-time PCR technique for DNA-damage quantification (LORD-Q) and its suitability to simultaneously measure DNA damage rates and mitochondrial DNA copy numbers in cultured cells and tissue samples. Using the LORD-Q multiplex assay, we exemplarily show that the mitochondrial DNA content does not directly affect DNA damage susceptibility, but influences the efficacy of certain anticancer drugs. Hence, LORD-Q provides a fast and precise method to assess DNA lesions, DNA repair and mtDNA replication as well as their role in a variety of pathological settings.

15.
Nat Prod Res ; 31(9): 985-989, 2017 05.
Article in English | MEDLINE | ID: mdl-26186097

ABSTRACT

Four quinolinones (1-4; 1 is a new compound) were isolated from the static fermentation culture of a shark gill-derived fungus Penicillium polonicum AP2T1. In addition, five new quinolinone derivatives (5-9) and also 1 were obtained in a trimethylsilyldiazomethane-induced methylation reaction of 4. Their structures were elucidated by spectroscopic analyses. In bioassays, compounds 7 and 5 with lactim structures moderately inhibited the proliferation of human cancer cell line HCT116 (wild-type) with IC50-24 h of 8.4 µg/mL and 30.7 µg/mL, respectively; the other compounds displayed weaker inhibition. The p53 gene may play some role in their action as suggested by their much weakened activity towards p53-knockout HCT116 cell line. Besides, 6 and 8 exhibited moderate or weak toxicity to brine shrimp larvae, and 3, 4, 8 and 9 showed weak inhibition against Staphylococcus aureus. It is the first report on elucidation of new compounds with origin of shark-derived fungi.


Subject(s)
Gills/microbiology , Penicillium/metabolism , Quinolones/isolation & purification , Sharks/microbiology , Animals , Artemia/drug effects , Humans , Quinolones/chemistry , Quinolones/pharmacology , Staphylococcus aureus/drug effects
17.
Mol Cell Oncol ; 3(2): e1052183, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27308586

ABSTRACT

Pluripotent stem cells must be endowed with efficient genome surveillance. Here we describe the multiple mechanisms that ensure their genome integrity, including high susceptibility to apoptosis and efficient prevention of DNA lesions. In induced pluripotent stem cells, apoptosis hypersensitivity is mediated by increased expression of proapoptotic BCL-2 protein, whereas DNA damage is prevented by the upregulation of several antioxidant enzymes. Antioxidants might be therefore employed for safer stem cell therapies.

18.
J Biol Chem ; 291(24): 12851-12861, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27129283

ABSTRACT

Macrophages constitute a first line of pathogen defense by triggering a number of inflammatory responses and the secretion of various pro-inflammatory cytokines. Recently, we and others found that IκBζ, an atypical IκB family member and transcriptional coactivator of selected NF-κB target genes, is essential for macrophage expression of a subset of pro-inflammatory cytokines, such as IL-6, IL-12, and CCL2. Despite defective pro-inflammatory cytokine expression, however, IκBζ-deficient mice develop symptoms of chronic inflammation. To elucidate this discrepancy, we analyzed a regulatory role of IκBζ for the expression of anti-inflammatory cytokines and identified IκBζ as an essential activator of IL-10 expression. LPS-challenged peritoneal and bone marrow-derived macrophages from IκBζ-deficient mice revealed strongly decreased transcription and secretion of IL-10 compared with wild-type mice. Moreover, ectopic expression of IκBζ was sufficient to stimulate Il10 transcription. On the molecular level, IκBζ directly activated the Il10 promoter at a proximal κB site and was required for the transcription-enhancing trimethylation of histone 3 at lysine 4. Together, our findings show for the first time the IκBζ-dependent expression of an anti-inflammatory cytokine that is crucial in controlling immune responses.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Interleukin-10/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line , Cells, Cultured , Embryo, Mammalian/cytology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Immunoblotting , Inflammation/genetics , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-10/genetics , Macrophages/cytology , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/metabolism , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/antagonists & inhibitors , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction
19.
J Cell Sci ; 129(11): 2213-23, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27076518

ABSTRACT

The pro-apoptotic multidomain Bcl-2 proteins Bax and Bak (also known as BAK1) are considered the gatekeepers of the intrinsic pathway of apoptosis by triggering the mitochondrial release of cytochrome c The role of the third Bax- and Bak-homologous multidomain protein Bok, however, is still unresolved. As cells doubly deficient for Bax and Bak are largely resistant to various apoptotic stimuli, it has been proposed that Bok is either dispensable for apoptosis or that its role is dependent on Bax and Bak. Here, we demonstrate, in several cell systems, that Bok efficiently induces cytochrome c release and apoptosis even in the complete absence of both Bak and Bax. Moreover, modulation of endogenous Bok levels affects the apoptosis response. By RNA interference and targeted deletion of the Bok gene, we demonstrate that Bok can significantly influence the apoptotic response to chemotherapeutic drugs in ovarian carcinoma cells. Hence, our results not only establish Bok as a Bak- and Bax-independent apoptosis inducer, but also suggest a potential impact of Bok expression in ovarian cancer therapy.


Subject(s)
Apoptosis , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis/drug effects , Cytochromes c/metabolism , Cytostatic Agents/pharmacology , Gene Knockdown Techniques , Green Fluorescent Proteins/metabolism , HCT116 Cells , Humans , MCF-7 Cells , Mitochondria/drug effects , Mitochondria/metabolism
20.
Angew Chem Int Ed Engl ; 55(3): 1192-5, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26662792

ABSTRACT

Histone deacetylases (HDACs) regulate the function and activity of numerous cellular proteins by removing acetylation marks from regulatory lysine residues. We have developed peptide-based HDAC probes that contain hydroxamate amino acids of various lengths to replace modified lysine residues in the context of known acetylation sites. The interaction profiles of all human HDACs were studied with three sets of probes, which derived from different acetylation sites, and sequence context was found to have a strong impact on substrate recognition and composition of HDAC complexes. By investigating K382 acetylation of the tumor suppressor p53 as an example, we further demonstrate that the interaction profiles reflect the catalytic activities of respective HDACs. These results underline the utility of the newly established probes for deciphering not only activity, but also substrate selectivity and composition of endogenous HDAC complexes, which can hardly be achieved otherwise.


Subject(s)
Histone Deacetylases/metabolism , Molecular Probes , Cell Line , Humans , Mass Spectrometry , Substrate Specificity , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL