Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6686): 992-998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422143

ABSTRACT

Touch perception is enabled by mechanically activated ion channels, the opening of which excites cutaneous sensory endings to initiate sensation. In this study, we identify ELKIN1 as an ion channel likely gated by mechanical force, necessary for normal touch sensitivity in mice. Touch insensitivity in Elkin1-/- mice was caused by a loss of mechanically activated currents (MA currents) in around half of all sensory neurons activated by light touch (low-threshold mechanoreceptors). Reintroduction of Elkin1 into sensory neurons from Elkin1-/- mice restored MA currents. Additionally, small interfering RNA-mediated knockdown of ELKIN1 from induced human sensory neurons substantially reduced indentation-induced MA currents, supporting a conserved role for ELKIN1 in human touch. Our data identify ELKIN1 as a core component of touch transduction in mice and potentially in humans.


Subject(s)
Ion Channels , Mechanoreceptors , Mechanotransduction, Cellular , Membrane Proteins , Sensory Receptor Cells , Touch Perception , Animals , Humans , Mice , HEK293 Cells , Ion Channels/genetics , Ion Channels/physiology , Mechanoreceptors/physiology , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Membrane Proteins/genetics , Membrane Proteins/physiology , RNA, Small Interfering , Touch , Mice, Mutant Strains , Male , Female
2.
Elife ; 92020 04 01.
Article in English | MEDLINE | ID: mdl-32228863

ABSTRACT

Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions.


When cells receive signals about their surrounding environment, this initiates a chain of signals which generate a response. Some of these signalling pathways allow cells to sense physical and mechanical forces via a process called mechanotransduction. There are different types of mechanotransduction. In one pathway, mechanical forces open up specialized channels on the cell surface which allow charged particles to move across the membrane and create an electrical current. Mechanoelectrical transduction plays an important role in the spread of cancer: as cancer cells move away from a tumour they use these signalling pathways to find their way between cells and move into other parts of the body. Understanding these pathways could reveal ways to stop cancer from spreading, making it easier to treat. However, it remains unclear which molecules regulate mechanoelectrical transduction in cancer cells. Now, Patkunarajah, Stear et al. have studied whether mechanoelectrical transduction is involved in the migration of skin cancer cells. To study mechanoelectrical transduction, a fine mechanical input was applied to the skin cancer cells whilst measuring the flow of charged molecules moving across the membrane. This experiment revealed that a previously unknown protein named Elkin1 is required to convert mechanical forces into electrical currents. Deleting this newly found protein caused skin cancer cells to move more slowly and dissociate more easily from tumour-like clusters of cells. These findings suggest that Elkin1 is part of a newly identified mechanotransduction pathway that allows cells to sense mechanical forces from their surrounding environment. More work is needed to determine what role Elkin1 plays in mechanoelectrical transduction and whether other proteins are also involved. This could lead to new approaches that prevent cancer cells from dissociating from tumours and spreading to other body parts.


Subject(s)
Mechanotransduction, Cellular/physiology , Melanoma/pathology , Membrane Proteins/physiology , Cell Adhesion , Cell Communication , Cell Line, Tumor , Cell Movement , Humans , Ion Channels/physiology , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL